TVA Calculation Package

Page: 01 of 220

Title	Ash Pond Breaching Project Work Plan	ĺ

Location Des	cription: Ash F		Watts Bar Fo	ossil Plant,	Spring		ges: (including & attachments)	
	O (All parts required		m a unique ID)):	************			
	Location/ Plant Code						Discipline Code (1) + Type Code (1) + "X" + e (3) + Year (4) + Sequence No. (4)	
	WBF	FES		CDX00000	0201200	1005	•	
NOTE: When re	eferencing the calcula	ation ID,	include all par	ts without sp	aces or da	shes between t	hem.	
	gate(s), or Voltage	-		The real Property lies	The second second	CTS/CCRIS):		
Applicable De	esign Document(s):		Rev	RIMS/I	EDMS Access	ion Number (Optional)	
WBF-10W253	-WP-1			R0				
	Walter and the same and the sam			R				
UNID System	(s):			R				
000				R				
	RO		R		1	R	R	
DCN, PCN, NA	A							
Prepared:								
Sign- →								
Print Name	Robert Hopp	er	Paliell	Mund				
	Jintao Wer		Wen 7	vete	1			
	Donna Friis		(D) 116	5	b		1	
Checked:			(9/) 1 · K	12 121-551				
Sign→								
Print Name	Ben Pernezi	าง	00					
5 1200 00 00 00 00 00 00 00 00 00 00 00 00	Steve Whiteside		Stephens a	Whites				
	Tim Verwey,		June X	21/				
	These calculations		unverified ass	sumption(s)	hat must b	e verified later?	□Yes MNo	
	These calculations			- 17 (Table 1)		9000	The state of the s	
Approved:	(0)	5						
Sign- >		2	_					
Print Name	David Mason,	PE						
Approval Date	8/11/1	2					1	
	These calculations	contain	a design outp	ut attachmer	nt? ∭ Ye	s 🗆 No		
Revision	X Entire calc		☐ Entire cald		☐ Entire		☐ Entire calc	
Applicability			☐ Selected p			ed pgs	☐ Selected pgs	
	Computer output N	/licrofich	e generated?	☐ Yes 🛱	No	Number:		
Purpose of the	Calculation: Supp	oort dev	velopment of	design drav	vings for	Ash Pond Brea	aching Project Work	

TVA Calculation Coversheet CTS Input Form

Page: <u>02</u> of <u>219</u>

Preparer				Prepare	er Login ID		Da	te	
Checker				Checke	er Login ID		Da	te	
Upda	ate Code:	⊠ Add □ Rename	☐ Cha e ☐ Sup	nge ersede	☐ Delete ☐ Duplicate	e □Ver	ify		
The follo	wing section		a calculation	is being	renamed, su	uperseded,	or has a duplic		T
		Org Code	Plar	nt	Branch	N	umber	Cur Rev	New Rev
Current	Calc ID:								
The follo	wing section	n applies to	all calculati	ons.					
Calc ID:		FPG	WBF	•	FES	CDX0000	002012001005	0	0
Firm	: (TVA or C	Contractor)	CDM Smith	1				_	
				Cross	s-References				
A/C/D	Xref Code	Туре	Org Code	F	Plant	Branch	Numbe	nber Re	

TVA Calculation Record of Revision

Page: <u>03</u> of <u>219</u>

Calculation	n Identifier:	CDX0000002012001005
	Title	
	1	
Revision No.	Description	n of Revision

TVA Computer File Storage Information Sheet

Page: 04 of 219 Rev. Calculation Identifier: CDX0000002012001005 Subject: These software model calculations support the Ash Pond Breaching Project Work Plan 1. **Software Name:** 1.) HEC-HMS 3.5 2.) U.S.EPA SWMM 5.0 **Revision Level: Vendor Name:** 1.) U.S. Army Corps of Engineers 2.) U.S. EPA Address: 1.) http://www.hec.usace.army.mil/software/hec-hms/download.html 2.) http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/ **Executable Files** No TVA developed **executable files** were used in this calculation. Comments: TVA developed executable files used in this calculation have been stored electronically and sufficient identifying information is provided below for each executable file. (Any retrieved file requires re-verification of its contents before use.) **Input Files** Electronic storage of the **input files** for this calculation is not required. Comments: Input files for this calculation have been stored electronically and sufficient identifying information is provided below for each input file. (Any retrieved file requires re-verification of its contents before use.)

TVA Calculation Table of Contents

Page: <u>05</u> of <u>219</u>

Calculation Identifier:	CDX0000002012001005	Revision:
-------------------------	---------------------	-----------

Table of Contents

Section	Title	Page
Section	Cover Sheet	01
	CTS Input Form	02
	Record of Revision	03
	Computer File Storage Information Sheet	04
	Table of Contents	05
Exhibit 01	Spillway Hydrologic and Hydraulic Modeling	
Exhibit 02	Hydraulics Calculations and Spillway Rating Curve	
Exhibit 03	Calculation Reference - Geotechnical Borings Report	
Exhibit 04	Geotechnical Calculations	
Exhibit 05	Structural Calculations	

CLIENT TVA

PROJECT Watts Bar Ash Pond

DETAIL Ash Pond Inflow Hydrograph

PROJECT NO. 92016,2202

TVA Calculation Package GENWBFFESCDX000002012001005

COMPUTED BY / DATE	R.H.		07/27/12
CHECKED BY / DATE	B.P.		08/14/12
REVISION NO. / DATE	-		-
REVIEWED BY / DATE	-	-	-

Ash Pond Inflow Hydrograph

1.0 Objective

Develop Ash Pond inflow hydrographs for range of design rainfall events.

2.0 Procedure

- 1.) Develop watershed hydrologic modeling parameters using SCS peak flow methods.
- 2.) Build hydrologic model in HEC-HMS using SCS peak flow methods.
- 3.) Simulate suite of design storms.
- 4.) Verify model by comparison of resulting hydrographs and peak flows with available information.

3.0 References / Data Sources

- 1.) Volume 2 of 3: Facilities Design and Construction Requirements TVA Coal Combustion Products Management Program Master Programmatic Document (Revision 1.0) 2009, by URS.
- $2.)\ NRCS\ WinTR-55\ Manual\ (ftp://ftp.wcc.nrcs.usda.gov/wntsc/H\&H/WinTR55/WinTR55UserGuide.pdf)$
- 3.) HEC-HMS Version 3.5 Software and Users Manual

 $http://www.hec.usace.army.mil/software/hec-hms/download.html\ http://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_3.5.pdf$

4.) Survey conducted Nov 2011, CAD file: B000EXBS.dwg

Survey conducted May 2012 CAD file: wf06_wbn12397_20120505(ver2007).dwg

5.) The culverts (6 RCP barrels) along the security roadway are reported to overtop approximately once per year by TVA security staff.

4.0 Assumptions / Limitations

1.) Watershed hydrologic parameters developed based on desktop information available in GIS, survey data, and limited field observation.

5.0 Calculations

5.1 Develop hydrologic parameters

1.) Subbasin Area - delineation performed in GIS using USGS topographic map and aerials (Refer to Table 1 and Figure 1 Drainage Area).

Table 1. Watts Bar Ash Pond Subbasin Hydrologic Parameters

Subbasin	Area (acres)	Area (sq mi)	Composite CN	Lag (hr)	Lag (min)
1	20.5	0.032	88	0.25	14.71
2	11.9	0.019	84	0.25	15.18
3	19.2	0.03	86	0.28	16.85
4	16.8	0.026	84	0.30	18.19
5	44.4	0.069	84	0.33	20.06
6	68.5	0.107	66	0.48	28.84
7	8.4	0.013	73	0.25	14.90
Total	189.7	0.296			

2.) Table 2 - Composite Curve Number - input land use conditions (Fig 1) and hydrologic soils group (Fig 2) into WinTR-55

The SCS Curve Number Method was utilized to calculate losses occurring prior to runoff. SCS Curve Numbers were developed for each subbasin based on existing land cover as observed on 2011 Aerial photography with consideration for recent removal of coal combustion facility and landfill closure area conditions. Table 2 lists the watershed subbasin curve numbers and the land surface conditions and hydrologic soils group used to assign the curve number using Win TR-55. Figure 2 shows the hydrologic soil group distribution across the drainage area.

Additionally, the water surface area of the Ash Pond itself is accounted for as directly connected impervious area with 5.8 acres entered in the model.

Table 2. Ash Pond Drainage Area Hydrologic Modeling SCS Curve Numbers

Subbasin	Acres	Land Use Description	Hydrologic Soils Group	CN	Composit e CN (from TR- 55)	Tc (hr)	Tc (min)
1	20.5	5.8 open water impervious	5.8 acres urban D HSG	98	88	0.25	14.71
		14.7 acres fair cond grass	6.6 acres B HSG	84			
			8.1 acres urban D HSG				
2	11.9	managed pervious - fair cond grass	all urban D HSG	84	84	0.25	15.18
3	19.2	7 acres grass	all urban D HSG	79	86	0.28	16.85
		10 acres gravel		89			
		2.2 acres buildings		98			
4	16.8	managed pervious - fair cond grass	all urban D HSG	84	84	0.30	18.19
5	44.4	6 acres of gravel	all urban D HSG	91	84	0.33	20.06
		31.9 acres of fair cond grass		84			
		8.5 acres of woods - fair cond					
6	68.5	forested - fair cond	39.9 acres of B HSG	60	66	0.48	28.84
			28.6 acres of C HSG	73			
7	8.4	forested - fair cond	all C HSG	73	73	0.25	14.90

3.) Table 3 - Lag Time - developed utilizing longest flow path for each subbasin as shown on Figure 1 (Summary in Table 1, Calculations in Table 3)

Runoff from each subbasin is transformed to a discharge hydrograph using the SCS Unit Hydrograph Method. This method utilizes a Lag Time in minutes derived as 0.6 times the time of concentration along the longest flow path in each subbasin. The time of concentration was calculated as the total of the sheet flow, shallow concentrated flow, and channel flow segments. Figure 2 shows the longest flow paths for each subbasin and Table 4 lists the calculated lag times

4.) Table 4 - Area Elevation - curve for Ash Pond derived from survey in CAD (existing conditions curve utilized in model)

Table 4. Ash Pond Area- Elevation Curve from CAD

Elev	Area (sq ft)	Elev	Area (Acres)
710	353,001	710	8.10
709	346,630	709	7.96
708	339,126	708	7.79
707	332,287	707	7.63
706	325,514	706	7.47
705	318,807	705	7.32
704	312,166	704	7.17

703	305,590	703	7.02
702	299,083	702	6.87
701	292,644	701	6.72
700	286,273	700	6.57
699	279,970	699	6.43
698	273,735	698	6.28
697	267,569	697	6.14
696	261,470	696	6.00
695	255,441	695	5.86
694	249,480	694	5.73

5). Table 5 - Reach dimensions and conditions derived from GIS aerials and limited available survey in CAD Routing of runoff from each subbasin was through a network of four reaches representing the drainage pathways on the site. Routing was performed using the Muskingum Cunge method using a typical cross section of estimated dimensions for each reach in the low gradient conditions. Typical reach characteristics, as listed in Table 5, are based the CAD file (388911.dwg) and GIS aerials. The culverts (6 barrels) conveying flows beneath the roadway just upstream of the Ash Pond are included in the model since they provide some storage, although limited information was available to model the dimensions of these culverts or of any upstream culverts.

Table 5. Reach Characteristics (ft)

	able of Readil Granate risted (14)									
Reach	High Elev (ft)	Low Elev (ft)	Length (ft)	Slope	Bottom	Side	Channel	Manning'		
		LOW LIEV (IL)		Siope	Width	Slope	Condition	s n		
1	705	703	670	0.0030	_	3H:1V	Constructed	0.4		
1	703	703	670	0.0030	5	3H.1V	grassed	0.4		
2	709	705	560	0.0071	4	3H:1V	Constructed	0.4		
2	709	705	500	0.0071	4	311.1	grassed	0.4		
3	724	709	1670	0.0090	3	3H:1V	Forested	0.5		
4	720	709	2200	0.0050	2	3H:1V	Forested	0.5		

A storage area was modeled behind the roadway culverts upstream of the Ash Pond to account for limited attenuation and verify the frequency of overtopping flows at the roadway. The small estimated storage area is based on very limited CAD survey information in the area behind the culverts. The roadway is anecdotally known to flood on a yearly basis. Therefore, model results for the 1-year rainfall indicating that the culverts overtop provides some verification that the modeled flows are reasonable for the site conditions.

6.) Table 6 - Rainfall for the drainage area is from the NOAA Atlas 14 website for the Watts Bar Dam Station. An SCS Type II rainfall distribution with 24 hour duration is used for each recurrence interval. NOAA precipitation data provided as Table 7.

NOAA Atlas 14 Point Precipitation Frequency Estimates. Accessed May 19, 2012. http://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html?bkmrk=nc

Table 6. NOAA Rainfall at Watts Bar Dam Station

Recurrence Interval (yr)	Rainfall (in)
1	2.95
2	3.53
10	4.9
25	5.73
50	6.39
100	7.06

Figure 3 provides a schematic view of the HMS model. The model file folder is named: WattsBarAshPondHMS

6.0 Conclusions

The result is a detailed hydrologic model using the SCS peak flow method of the Watts Bar Ash Pond verified based on available information. The resulting inflow hydrographs shall be used as inputs for hydraulic modeling associated with design of Ash Pond discharge spillway improvements.

CDM Smith Feet 0 333 667 1000 1,333

TVA Watts Barr Ash Pond Figure 1. NRCS Soils

Watts Bar Ash Pond Lag Time Calculations Watershed Id: 1 Ash Pond	Watershed ld: 2	Watershed ld: 3	Watershed Id: 4
Segment for Travel Time Method	Segment for Travel Time Method	Segment for Travel Time Method	Segment for Travel Time Method
Total Time of Concentration (hr) Lag Time (hr) 0.41 0.25	Total Time of Concentration (hr) Lag Time (hr) 0.42 0.25	Total Time of Concentration (hr) Lag Time (hr) 0.47 0.28	Total Time of Concentration (hr) Lag Time (hr) 0.51 0.30
1. Surface Description Grass 2. Flow Length, L ft 150 3. Manning's "n" 0.15 4. 2-Yr, 24-Hr Rainfall, P2 in 3.59 5. High point el 654 6. Low point el 651	SHEET FLOW 1. Surface Description Grass 2. Flow Length, L ft 150 3. Manning's "n" 0.15 0.15 4. 2-Yr, 24-Hr Rainfall, P2 in 3.59 5. High point el 654 6. Low point el 6. Low point el 645 7. Land slope, s ft/ft 0.0600	SHEET FLOW 1. Surface Description Grass 2. Flow Length, L ft 150 3. Manning's "n" 0.15 0.15 4. 2-Yr, 24-Hr Rainfall, P2 in 3.59 5. High point el 672 6. Low point el 669 7. Land slope, s ft/ft 0.0200	SHEET FLOW 1. Surface Description Crass 150
(P ₂) 0.5 s 0.4	Kinematic Tt = $\frac{0.007 (\text{n L})^{0.8}}{(\text{P}_2)^{0.5} \text{ s}^{0.4}}$	Kinematic Tt = $\frac{0.007 (n L)^{0.8}}{(P_2)^{0.5} s^{0.4}}$	Kinematic Tt = $\frac{0.007 (n L)^{0.8}}{(P_2)^{0.5} s^{0.4}}$
SHALLOW CONCENTRATED FLOW 9. Surface Description (Paved or Unpaved) 10. Flow Length, L 11. High point el 12. Low point el 13. Watercourse slope, s 14. Hydraulic Radius, r (A/P) Manning's Eq. V = 1.49 r 0.67 s 0.5 / n 15. Manning's n 16. Average Velocity, V 17. Travel Time CHANNEL FLOW 1 18. Channel length, L 19. High point channel el 20. Low point channel el 21. Manning's "n" 22. Channel bottom width, 23. Channel top width, 24. Channel depth, 25. Cross sectional flow area, a 26. Wetted perimeter, pw 17. Hydraulic radius, r=a/pw 18. Channel slope, s 19. High point channel el 21. Manning's "n" 22. Channel depth, 350 446 451 462 465 465 465 465 465 465 466 467 466 467 466 468 468 469 469 469 469 469	8. Travel Time hr	8. Travel Time hr 0.21 CHANNEL FLOW 1 18. Channel length, L 9. High point channel el 669 20. Low point channel el 651 21. Manning's "n" 0.03 22. Channel bottom width, ft 1 23. Channel top width, ft 1 25. Cross sectional flow area, a 62. Wetted perimeter, pw ft 4.6 27. Hydraulic radius, r=a/pw ft 0.54 28. Channel slope, s fufft 0.0071 29. Average Velocity, V ft/s 2.77 30. Travel Time hr 0.26	8. Travel Time hr 0.16 SHALLOW CONCENTRATED FLOW 9. Surface Description (Paved or Unpaved) 10. Flow Length, L 11. High point el 12. Low point el 13. Watercourse slope, s 14. Hydraulic Radius, r (A/P) 15. Manning's Part Service

Watts Bar Ash Pond Lag Time Calculations		
Watershed Id: 5 Segment for Travel Time Method	Watershed Id: 6 Segment for Travel Time Method	Watershed Id: 7 Segment for Travel Time Method
Total Time of Concentration (hr) Lag Time (hr) 0.56 0.33	Total Time of Concentration (hr) Lag Time (hr) 0.80 0.48	Total Time of Concentration (hr) Lag Time (hr) 0.41 0.25
SHEET FLOW 1. Surface Description 2. Flow Length, L 3. Manning's "n" 4. 2-Yr, 24-Hr Rainfall, P ₂ 5. High point el 6. Low point el 7. Land slope, s SHEET FLOW Grass ft 150 0.15 1 3.59 674 6. Low point el 677 7. Land slope, s	SHEET FLOW 1. Surface Description 2. Flow Length, L 3. Manning's "n" 4. 2-Yr, 24-Hr Rainfall, P ₂ 5. High point el 6. Low point el 7. Land slope, s SHEET FLOW Woods 1 200 3.59 5.49 5.70 6.7	## SHEET FLOW 1. Surface Description 2. Flow Length, L 3. Manning's "n" 4. 2-Yr, 24-Hr Rainfall, P2 5. High point el 6. Low point el 7. Land slope, s ## Woods ## 200 ## 3.59 ## 3.59 ## 768 ## 750 ##
Kinematic Tt = $\frac{0.007 \text{ (n L)}^{0.8}}{(P_2)^{0.5} \text{ s}^{0.4}}$ 8. Travel Time hr 0.25	Kinematic Tt = $\frac{0.007 (n L)^{0.8}}{(P_2)^{0.5} s^{0.4}}$ 8. Travel Time hr 0.23	Kinematic Tt = $\frac{0.007 (n L)^{0.8}}{(P_2)^{0.5} s^{0.4}}$ 8. Travel Time hr 0.32
SHALLOW CONCENTRATED FLOW 9. Surface Description (Paved or Unpaved) 10. Flow Length, L 11. High point el 12. Low point el 13. Watercourse slope, s 14. Hydraulic Radius, r (A/P) Manning's Eq. V =1.49 r 0.67 s 0.5 / n	SHALLOW CONCENTRATED FLOW 9. Surface Description (Paved or Unpaved) 10. Flow Length, L 11. High point el 12. Low point el 13. Watercourse slope, s 14. Hydraulic Radius, r (A/P) Manning's Eq. V =1.49 r 0.67 s 0.5 / n	SHALLOW CONCENTRATED FLOW 9. Surface Description (Paved or Unpaved) 10. Flow Length, L 11. High point el 12. Low point el 13. Watercourse slope, s 14. Hydraulic Radius, r (A/P) Manning's Eq. V =1.49 r 0.67 s 0.5 / n
15. Manning's n 0.1 16. Average Velocity, V ft/s 0.37 17. Travel Time hr 0.16	15. Manning's n 0.1 16. Average Velocity, V ft/s 1.37 17. Travel Time hr 0.18	15. Manning's n 0.1 16. Average Velocity, V ft/s 1.98 17. Travel Time hr 0.07
CHANNEL FLOW 1 18. Channel length, L 19. High point channel el 20. Low point channel el 21. Manning's "n" 22. Channel bottom width, 23. Channel top width, 24. Channel depth, 25. Cross sectional flow area, a 26. Wetted perimeter, pw 27. Hydraulic radius, r=a/pw 28. Channel slope, s 29. Average Velocity, V 30. Travel Time main ft 975 657 654 1 1 4 2 552 654 1 1 1 1 4 2 4 2 5 2 5 5 6 Wetted perimeter, pw ft 6 0 6 7 6 7 6 7 6 7 6 7 6 7 6 7	CHANNEL FLOW 1 18. Channel length, L 19. High point channel el 20. Low point channel el 21. Manning's "n" 22. Channel bottom width, 23. Channel top width, 24. Channel depth, 25. Cross sectional flow area, a 26. Wetted perimeter, pw 17. Hydraulic radius, r=a/pw 28. Channel slope, s 29. Average Velocity, V 30. Travel Time Text 2382 Text 2382 Text 2382 Text 2382 Text 348 Text 1 10.046 10.046 10.39	CHANNEL FLOW 1 8. Channel length, L 19. High point channel el 20. Low point channel el 21. Manning's "n" 22. Channel bottom width, 24. Channel depth, 25. Cross sectional flow area, a 26. Wetted perimeter, pw 17. Hydraulic radius, r=a/pw 28. Channel slope, s 18. Channel slop

Table 7. NOAA Rainfall at Watts Bar Dam Station

Duration Average reconstitutival (years) Property	Duration	Avorago									
	Duration										
S-min											
Seminary		(years)									
10-min 0.575 0.68		1	2	5	10	-		100	200	500	1000
10-min 1	5-min	0.36	0.425	0.504	0.571	0.662	0.736	0.814	0.894	1.01	1.1
10-min		(0.333-0.393)	١,	١, ١	l` .	l` .	l` .	,	,	l ` .	l ` .
15-min	10-min	0.575	0.68	0.806	0.913		1.17	1.29	1.42	1.59	-
15-min (0.664 · 0.78) (0.78) (0.78) (0.941 · 1.1 (1.061 · 1.26) (1.22 · 1.45) (1.35 · 1.61) (1.47 · 1.77) (1.59 · 1.94) (1.76 · 2.17) (1.88) (0.941 · 1.1) (1.061 · 1.26) (1.22 · 1.45) (1.35 · 1.61) (1.47 · 1.77) (1.59 · 1.94) (1.76 · 2.17) (1.88) (0.910 · 1.08) (1.09 · 1.22) (1.34 · 1.58) (1.54 · 1.82) (1.81 · 2.15) (2.03 · 2.42) (2.25 · 2.71) (2.48 · 3.02) (2.79 · 3.45) (3.06) (0.910 · 1.08) (1.09 · 1.22) (1.34 · 1.58) (1.54 · 1.82) (1.81 · 2.15) (2.03 · 2.42) (2.25 · 2.71) (2.48 · 3.02) (2.79 · 3.45) (3.06) (0.910 · 1.08) (1.09 · 1.22) (1.34 · 1.58) (1.54 · 1.82) (1.81 · 2.15) (2.03 · 2.42) (2.25 · 2.71) (2.48 · 3.02) (2.79 · 3.45) (3.06) (1.41 · 1.34) (1.37 · 1.62) (1.71 · 2.02) (2.00 · 2.38) (2.41 · 2.87) (2.75 · 3.29) (3.10 · 3.73) (3.47 · 4.23) (4.01 · 4.95) (4.4		(0.531-0.628)		1.		l .	(1.06-1.27	(1.16-1.40	(1.26-1.54)	(1.39-1.72	(1.50-1.88
30-min 3	15-min	0.718	- /	,	,		1.49	1.63	1.79	2	2.17
30-min		(0.664-0.785)	l` .	11.	(1.06-1.26	(1.22-1.45	(1.35-1.61	(1.47-1.77	(1.59-1.94	(1.76-2.17	(1.88-2.35
1.0910-1.08 1.091.29 1.34-1.58 1.54-1.82 1.81-2.15 2.03-2.42 2.25-2.71 2.48-3.02 2.79-3.45 3.05 3.06	30-min	0.985	,		1.67	1.98	2.24	2.5	2.78	3.19	3.51
Commin C	00 111111			1	_						
1.14		(0.010 1.00))))))))))
2-hr	60-min	1.23	1.48	1.86	2.18	2.64	3.03	3.45	3.9	4.57	5.13
1.35-1.59 1.62-1.91 2.02-2.39 2.36-2.79 2.84-3.88 3.25-3.88 3.67-4.42 4.12-5.00 4.75-5.88 5.26 3.18 3.38 3.81 4.33 4.89 5.72 3.18 3.20 3.18 3.38 3.81 4.33 4.89 5.72 3.18 3.20 3.18 3.20 3.18 3.3		(1.14-1.34)	(1.37-1.62	(1.71-2.02	(2.00-2.38	(2.41-2.87	(2.75-3.29	(3.10-3.73	(3.47-4.23	(4.01-4.95	(4.45-5.56
1.35-1.59 1.62-1.91 2.02-2.39 2.36-2.79 2.84-3.88 3.25-3.88 3.67-4.42 4.12-5.00 4.75-5.88 5.26 3.18 3.38 3.81 4.33 4.89 5.72 3.18 3.20 3.18 3.38 3.81 4.33 4.89 5.72 3.18 3.20 3.18 3.20 3.18 3.3	2-hr	1.46	1.75	2.2	2.57	3.12	3.58	4.09	4.63	5.43	6.1
6-hr (1.47-1.72) (1.76-2.06 (2.18-2.56 (2.54-2.98 (3.05-3.59 (3.46-4.11 (3.90-4.67 (4.36-5.27 (5.01-6.18 (5.57 (6.48 (5.16-6.16 (5.87-7.14 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (5.18 (5.16-6.16 (5.87-7.14 (5.18 ((1.35-1.59)	(1.62-1.91	(2.02-2.39	(2.36-2.79	(2.84-3.38	(3.25-3.88	(3.67-4.42	(4.12-5.00	(4.75-5.88	(5.26-6.62
6-hr (1.47-1.72) (1.76-2.06 (2.18-2.56 (2.54-2.98 (3.05-3.59 (3.46-4.11 (3.90-4.67 (4.36-5.27 (5.01-6.18 (5.57 (6.48 (5.16-6.16 (5.87-7.14 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (5.18 (5.16-6.16 (5.87-7.14 (5.18 (0.1	4.50))))))	1.00))
6-hr	3-nr										
1.83 - 2.12 2.18 - 2.53 2.66 - 3.09 3.07 - 3.57 3.65 - 4.26 4.13 - 4.85 4.63 - 5.48 5.16 - 6.16 5.87 - 7.14 6.42 6.10 7.57 6.27 - 2.62 6.15 - 7.30 6.95 - 8.35 7.57		(1.47-1.72)	(1.76-2.06)	(2.18-2.56	(2.54-2.98)	(3.05-3.59	(3.46-4.11	(3.90-4.67))	(5.55-6.94
12-hr	6-hr	1.96	2.34	2.86	3.32	3.96	4.52	5.1	5.73	6.63	7.38
(2.27-2.62) (2.70-3.13 (3.29-3.81 (3.78-4.38 (4.45-5.18 (5.00-5.85 (5.57-6.55 (6.15-7.30 (6.95-8.35 (7.57-6.55 (6.15-7.30 (6.95-8.35 (7.57-6.55 (6.15-7.30 (6.95-8.35 (7.57-6.55 (6.15-7.30 (6.95-8.35 (7.57-6.55 (6.15-7.30 (6.95-8.35 (7.57-6.55 (6.15-7.30 (6.95-8.35 (7.57-6.55 (6.15-7.31 (7.16-8.22 (7.98-9.20 (8.60 (2.77-3.15)) (3.31-3.78 (4.03-4.60 (4.59-5.24 (5.35-6.11 (5.95-6.81 (6.55-7.51 (7.16-8.22 (7.98-9.20 (8.60 (3.34-3.82)) (3.99-4.57 (4.86-5.56 (5.54-6.33 (6.45-7.38 (7.17-8.21 (7.88-9.06 (8.60-9.91 (9.56-11.1 (10.33 (3.58-4.09)) (4.28-4.89 (5.19-5.93 (5.88-6.73 (6.81-7.79 (7.53-8.63 (8.24-9.47 (8.94-10.3 (9.87-11.4 (10.63 (3.81-4.36)) (4.56-5.22 (5.52-6.31 (6.23-7.13 (7.17-8.21 (7.89-9.05 (8.59-9.87 (9.29-10.7 (10.2-11.8 (10.84 (4.65-5.32)) (5.54-6.34 (6.64-7.60 (7.45-8.53 (8.49-9.74 (9.98-10.6 (10.0-11.5 (10.8-12.4 (11.7-13.5 (10.84 (6.34-7.60 (7.45-8.53 (8.49-9.74 (9.98-10.6 (10.0-11.5 (10.8-12.4 (11.7-13.5 (10.84 (1.34-14.8 (10.44-11.9 (10.4-11.9 (11.3-12.9 (11.3-12.9 (11.3-12.9 (13.3-13.5 (13.4-14.8 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7 (14.7 (14.7 (14.1-15.8 (14.8-16.7 (14.7 (14.7 (14.1-15.8 (14.8-16.7 (14.7 (1		(1.83-2.12)	(2.18-2.53)	(2.66-3.09)	(3.07-3.57)	(3.65-4.26)	(4.13-4.85)	(4.63-5.48)	(5.16-6.16)	(5.87-7.14)	(6.45-7.96)
24-hr	12-hr	2.44	2.9	3.53	4.07	4.82	5.45	6.1	6.79	7.76	8.55
Carron C		(2.27-2.62)	(2.70-3.13)	(3.29-3.81)	(3.78-4.38)	(4.45-5.18)	(5.00-5.85)	(5.57-6.55)	(6.15-7.30)	(6.95-8.35)	(7.57-9.23)
2-day	24-hr	2.95	3.53	4.3	4.9	5.73	6.39	7.06	7.74	8.66	9.38
3.34-3.82) (3.99-4.57 (4.86-5.56 (5.54-6.33 (6.45-7.38 (7.17-8.21 (7.88-9.06 (8.60-9.91) 9.56-11.1 (10.3 (10.5 (1		(2.77-3.15)	(3.31-3.78	(4.03-4.60)	(4.59-5.24)	(5.35-6.11)	(5.95-6.81	(6.55-7.51)	(7.16-8.22)	(7.98-9.20)	(8.60-9.96
3.43 (3.34-3.82) (3.99-4.57 (4.86-5.56 (5.54-6.33 (6.45-7.38 (7.17-8.21 (7.88-9.06 (8.60-9.91 (9.56-11.1 (10.5) (10.54-6.33 (6.45-7.38 (7.17-8.21 (7.88-9.06 (8.60-9.91 (9.56-11.1 (10.54-6.33 (6.45-7.38 (7.17-8.21 (7.88-9.06 (8.60-9.91 (9.56-11.1 (10.54-6.34 (9.87-11.4 (10.64-6.34 (9.84-9.74 (9.88-10.34 (9.87-11.4 (10.64-6.34 (9.84-9.74 (9.88-10.34 (9.87-11.4 (10.64-6.34 (9.84-9.74 (9.88-10.34 (9.84-9.74 (9.88-10.34 (9.84-9.74 (9.88-10.34 (9.84-9.74 (9.88-10.34 (9.84-9.74 (9.88-10.34 (9.84-9.74 (9.88-9.74 (9.88-10.34 (9.84-9.74 (9.88-9.	2-day	3.57	4.26	5.2	5.93	6.92	7.7	8.5	9.3	10.4	11.2
Company Comp	,	(3.34-3.82)	(3.99-4.57	(4.86-5.56	(5.54-6.33	(6.45-7.38	(7.17-8.21	(7.88-9.06	(8.60-9.91	(9.56-11.1	(10.3-12.0
Company Comp	3-day	3.83	4.57	5.55	6.31	7.31	8.1	8.88	9.67	10.7	11.5
(3.81-4.36) (4.56-5.22 (5.52-6.31 (6.23-7.13 (7.17-8.21 (7.89-9.05 (8.59-9.87 (9.29-10.7 (10.2-11.8 (10.8 (1	o aay	(3.58-4.09)	(4.28-4.89			(6.81-7.79	(7.53-8.63	(8.24-9.47	(8.94-10.3	(9.87-11.4	(10.6-12.3
(3.81-4.36) (4.56-5.22 (5.52-6.31 (6.23-7.13 (7.17-8.21 (7.89-9.05 (8.59-9.87 (9.29-10.7 (10.2-11.8 (10.8 (1	4-day	4.09	4.88	5.91	6.69	7.71	8.49	9.27	10	11	11.8
(4.65-5.32) (5.54-6.34 (6.64-7.60)7.45-8.53 (8.49-9.74 (9.28-10.6)10.0-11.5 (10.8-12.4)11.7-13.5 (12.4)11.7-13.5 (12.4)10.0-11.5 (10.8-12.4)11.7-13.5 (12	,	(3.81-4.36)	(4.56-5.22	(5.52-6.31	(6.23-7.13	(7.17-8.21	(7.89-9.05	(8.59-9.87	(9.29-10.7	(10.2-11.8	(10.8-12.6
(4.65-5.32) (5.54-6.34 (6.64-7.60)7.45-8.53 (8.49-9.74 (9.28-10.6)10.0-11.5 (10.8-12.4)11.7-13.5 (12.4)11.7-13.5 (12.4)10.0-11.5 (10.8-12.4)11.7-13.5 (12	7-day	4.98	5.93	7.11	7.99	9.13	9.99	10.8	11.6	12.7	13.5
(5.32-6.07) (6.31-7.21 (7.50-8.56 (8.40-9.58 (9.56-10.9 (10.4-11.9 (11.3-12.9 (12.1-13.9 (13.1-15.2 (13.5 (1	, day										
(5.32-6.07) (6.31-7.21 (7.50-8.56 (8.40-9.58 (9.56-10.9 (10.4-11.9 (11.3-12.9 (12.1-13.9 (13.1-15.2 (13.5 (1	10-day	5 68	674	8 01) 8 98	10.2	11 2	12 1	13	14 2	15.1
(7.36-8.26) (8.70-9.77 (10.1-11.3 (11.1-12.5 (12.4-13.9 (13.2-14.9 (14.1-15.8 (14.8-16.7 (15.8-17.8 (16.4 (1	10-day								1		
(7.36-8.26) (8.70-9.77 (10.1-11.3 (11.1-12.5 (12.4-13.9 (13.2-14.9 (14.1-15.8 (14.8-16.7 (15.8-17.8 (16.4 (1	00.1	7.00)	10.7)	10.4))	15.0	10.0	17.0
(9.13-10.1) (10.7-11.8 (12.3-13.5 (13.4-14.8 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2	20-day										
(9.13-10.1) (10.7-11.8 (12.3-13.5 (13.4-14.8 (14.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2 (15.6-17.3 (16.5-18.2 (17.2-19.1 (18.1-20.2 (18.7-16.2	20 day	0.50	11 2	12.0	111) 15 5) 16 E	17.4	19 2	10.2	19.9
45-day 12.1 14.2 16.1 17.4 19.1 20.2 21.3 22.2 23.4	ou-uay										
		(9.13-10.1)	(10.7-11.8)	(12.3-13.5)	(13.4-14.8)	(14.7-16.2)	(15.0-17.3)	(16.5-18.2)	(17.2-19.1)	(18.1-20.2	(18.7-20.9)
	45-dav	12.1	14.2	16.1	17.4	19.1	20.2	21.3	22.2	23.4	24.1
		(11.6-12.7)	(13.5-14.9	(15.3-16.8	(16.6-18.3	(18.2-20.0	(19.3-21.2	(20.2-22.3	(21.1-23.3	(22.2-24.5	(22.9-25.4
)))))))))

60-day	14.5	17	19.2	20.8	22.7	24	25.2	26.2	27.4	28.2
	(13.8-15.2)	(16.2-17.8	(18.3-20.1	(19.8-21.8	(21.5-23.7	(22.8-25.1	(23.9-26.3	(24.9-27.5	(26.0-28.8	(26.7-29.7
)))))))))

Pasted from http://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html?bkmrk=nc>

Fig. B-2. Approximate geographic boundaries for SCS rainfall distributions (SCS, 1986):

Figure B-2.—Approximate geographic boundaries for SCS rainfall distributions

Figure 3 HEC -HMS Schematic

CLIENT TVA

PROJECT Watts Bar Ash Pond

DETAIL Ash Pond Spillway Modeling

PROJECT NO. 92016.2202

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

 COMPUTED BY / DATE
 R.H.
 07/27/12

 CHECKED BY / DATE
 B.P.
 08/14/12

 REVISION NO. / DATE

 REVIEWED BY / DATE

Ash Pond Spillway Modeling

1.0 Objective

- 1. Create hydraulic model of the Watts Bar Ash Pond spillway structures on which to base proposed conditions modeling.
- 2. Simulate conditions in the Watts Bar Ash Pond to determine the rainfall return interval which can be detained by a temporary cofferdam constructed to protect the spillway during construction of spillway improvements.
- 3. Simulate hydraulic conditions in the Watts Bar Ash Pond and spillway to iteratively determine the spillway improvement configuration required to convey the peak flow with 1 foot of freeboard, associated with the 100 year design frequency rainfall at a dam crest elevation of 701 ft.

2.0 Procedure

- 1.) Develop pond and spillway model in EPA SWMM based on surveyed existing conditions.
- 2.) Input hydrographs from HEC-HMS model for suite of design storms into SWMM model entering Ash Pond node.
- 3.) Simulate temporary spillway conditions with cofferdam.
- 4.) Simulate and iteratively determine suitable configuration and dimensions for proposed Ash Pond spillway.

3.0 References / Data Sources

- 1.) Volume 2 of 3: Facilities Design and Construction Requirements TVA Coal Combustion Products Management Program Master Programmatic Document (Revision 1.0) 2009, by URS.
- 2.) EPA, Stormwater Management Model (SWMM) 5.0 Software and Users Manual http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/
- 3.) Survey conducted Nov 2011, CAD file: B000EXBS.dwg Survey conducted May 2012 CAD file: wf06_wbn12397_20120505(ver2007).dwg

4.0 Assumptions / Limitations

- 1.) Downstream stages in Lake Chickamauga are not modeled in this calculation since they are not expected to peak at the same time as the Watts Bar Ash Pond and will therefore not affect the design configuration.
- 2.) Stage storage conditions in the Ash Pond are subject to future modification due to removal of ash and the splitter dyke. Projected future conditions based on pond survey B000EXBS.dwg were used to develop the area/elevation data for this calculation.

5.0 Calculations

The three SWMM model files: TVA_AshPond_Existing.inp

TVA_AshPond_Cofferdam.inp TVA_AshPond_Proposed.inp

5.1 Existing Conditions

Purpose: Create a hydraulic model of the existing conditions of the Watts Bar Ash Pond spillway structures on which to base proposed conditions modeling.

Methodology: Model the Ash Pond as a storage reservoir with the inflow hydrograph as output from the HMS model. Model the existing riser barrel structures as combined weir and culverts in series which are in parallel to the dam crest. Utilize dynamic wave simulation to account for back water effects between structures.

The following elements are interconnected in the model to represent the existing conditions as in the Figure 1 SWMM Model Schematic:

Storage Unit - Ash Pond, see Table 1 for elevation area information $% \left(1\right) =\left(1\right) =\left(1\right)$

Weirs 2, 5, 6 - Transverse type weir representing the riser crest at varying heights near 4.4 ft, length of 14.14' each.

Storage Unit 4 - This storage accounts for the volume between the riser weir and the barrels entrance

Culvert 1 - 3 - 3 ft diameter RCP barrels

Channel 3 - channel downstream of barrels modeled to contribute no tailwater

Weir 4 - emergency spillway over breach berm at 710 ft, 180 feet in length

Channel 10 - represents area/channel downstream of emergency spillway

Table 1. Ash Pond Stage Storage Curve

Table 1. Ash Pond Stage Storage Curve

Elevation	
(ft)	Area (Acres)
694	5.73
695	5.86
696	6
697	6.14
698	6.28
699	6.43
700	6.57
701	6.72
702	6.87
703	7.02
704	7.17
705	7.32
706	7.47
707	7.63
708	7.79
709	7.96
710	8.1

Result: The existing conditions model shows that the Ash Pond and existing riser barrel structure together are capable of storing/passing flows from the 100 year return interval rainfall without overtopping the dam at an elevation of 710 ft. This behavior is consistent with expectations for the existing structures.

5.2 Temporary Cofferdam

Purpose: Simulate conditions in the Watts Bar Ash Pond to determine the rainfall return interval which can be detained by a temporary cofferdam constructed to protect the spillway during construction of spillway improvements.

Methodology: Conduct a model run with conditions modified from the existing conditions SWMM model. The breach spillway is at elevation 701 ft for a length of 180 ft and set the initial water surface depth at zero to reflected pumped conditions. The existing riser/barrels are assumed to continue to discharge at their current configuration.

The following elements are adjusted in the cofferdam model to represent the proposed temporary conditions with an earthen cofferdam:

Storage Unit 4 - This storage accounts for the volume between the weir and the culvert entrance.

Culvert 1 - 4 - 4 x 6 box culverts

Channel 3 - channel downstream of culverts modeled to contribute no tailwater

Weir 4 - emergency spillway over breach berm, 180 feet in length

Channel 10 - represents area/channel downstream of emergency spillway

Results: The storage in the Ash Pond and conveyance of the existing riser/barrel structures handle flows from the 10-year event without overtopping the breach. Flows occurring in the 25-year event overtop the breach. Therefore a cofferdam would be capable of protecting the spillway construction for a storm exceeding the 10-year event but less than the 25-year.

Refer to separate Cofferdam calculation sheet for further detailed description and results.

5.3 Proposed Conditions

Purpose: Model the Watts Bar Ash Pond and spillway to determine the spillway improvement dimensions required to convey the peak flow with 1 foot of freeboard, associated with the 100 year design frequency rainfall at a dam crest elevation of 701 ft.

Methodology: Beginning with the existing conditions base model, adjust spillway dimensions and run iterative simulations with the proposed conditions to determine the proposed dimensions for the spillway structures:

The following elements are interconnected in the model to represent the proposed conditions as modified from the existing conditions by:

Weir 2 - Transverse type weir, height of 4 ft, length of 60'.

Storage Unit 4 - This storage accounts for the volume between the weir and the culvert entrance.

Culvert 1 - 4 - 4 x 6 box culverts

Channel 3 - channel downstream of culverts modeled to contribute no tailwater from Lake Chickamauga

Weir 4 - emergency spillway over breach berm, 180 feet in length

Channel 10 - represents area/channel downstream of emergency spillway with no tailwater from Lake Chickamauga

Figure 2 shows the model schematic for the proposed conditions.

Results: Four 4 x 6 foot box culverts are recommended to ensure adequate conveyance for the design storm with sufficient additional capacity to account for losses due to design configuration of the entrance.

Tables 2 and 3 summarize the modeled conditions and results of the proposed conditions modeling, respectively.

Table 2. SWMM Scenarios Parameter Summary

Scenario	Riser Elevation (ft)	Riser Length (ft)	Configur ation	Dam Crest Elevation (ft)	Dam Crest Length (ft)
Existing	700.4	42.42	RCP	708	250
Temporary Cofferdam	700.4	42.42	3 – 36" RCP	701	180
Proposed	698	65	Boxes	701	180

Table 3. Ash Pond Proposed Conditions Modeling Results

Design Storm	Peak Inflow (cfs)		Peak Stage (ft)	Peak Storage (ac- ft)
100yr	555	418	699.77	35.34
1/3 PMP	1,239	229 (Breach only)	701.56	47.54

6.0 Conclusions

- 1.) The result is a hydraulic model in EPA's SWMM software suitable for evaluation of proposed spillway and cofferdam conditions.
- 2. The rainfall return interval which can be detained by a temporary cofferdam constructed to protect the spillway during construction is the 10 year storm.
- 3. Based on the modeling, the proposed spillway configuration includes a 60 foot weir at elevation 698 with 4 4 x 6 ft box culverts at an elevation of 695.

Figure 1. Watts Bar Ash Pond and Ash Pond Spillway Modeling

01/01/2010 00:05:00

Figure 2. Watts Bar Ash Pond and Spillway EPA SWMM5.0 Schematic - Proposed Conditions

01/01/2010 00:05:00

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Cofferdam
PROJECT NO.	92016.2202

COMPUTED BY / DATE	R.H.	07/27/12
CHECKED BY / DATE	B.P.	08/14/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	_	_

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

Calculation Description: Cofferdam Design Frequency Storm

1.0 Objective

Determine design frequency (return interval) storm event which can be detained behind temporary cofferdam with various configurations of the existing riser structures.

2.0 Procedure

Using the SWMM model based on existing conditions, simulate various conditions with temporary cofferdam to estimate maximum stage during various design storms.

3.0 References / Data Sources

SWMM model of existing conditions described in modeling narrative.

4.0 Assumptions / Limitations

- 1.) Pond will be completely dewatered to elevation 694 ft.
- 2.) Cofferdam elevation will correspond to final berm elevation of 701 ft.
- 3.) The three existing risers' crest elevations are at 704.4 ft +/-0.1 ft with a length of 14.14 ft each.

5.0 Calculations

5.1 Determine the Channel Dimensions and Lining

Refer to table below for Watts Bar Ash Pond maximum stage for various configurations of the existing riser structures for each of the 5, 10, 25, and 100-year return interval rainfall events. Values in bold indicate overtopping expected under the associated conditions.

6.0 Conclusions

1.) Temporary conditions with the temporary earthen cofferdam at elevation 701′ and the breach at 701′ will detain the runoff associated with the 10-yr return interval storm within the Ash Pond without any risers in service. Lowering the crest of one or all of the three existing risers by about 4′ would allow them to pass a storm exceeding the 25-year rainfall and lowering one or all by about 6′ would allow them to pass a storm exceeding the 100-year rainfall event while the temporary cofferdam is in place.

Table 1. Watts Bar Ash Pond Temporary Cofferdam Maximum Stages

	P	Ash Pond	Stage (ft	t)
Temporary Configuration Alternative	5-yr	10-yr	25-yr	100-yr
Existing Risers with Dam at 710'	705.04	705.17	705.43	706.1
Existing Risers (or no risers) with Berm at				
701'	699.51	700.66	701.1	701.28
3 Lowered Risers (to 700.4') with Berm at				
701'	699.51	700.54	700.68	701.09
2 Lowered Risers (to 700.4') with Berm at				
701'	699.51	700.57	700.75	701.15
1 Lowered Riser (to 700.4') with Berm at				
701'	699.51	700.6	700.91	701.21
3 Lowered Risers (to 698.4) with Berm at				
701'	698.59	698.74	699.07	699.88
2 Lowered Risers (to 698.4') with Berm at				
701'	698.64	698.81	699.19	700

Exhibit 2 Hydraulics Calculations

SPILLWAY DESIGN

RATING CURVE

DEWATERING

INFLOW CHANNEL

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Proposed Ash Pond Spillway
OIECT NO	92016 2202

COMPUTED BY / DATE	M.E.A.	08/15/12
CHECKED BY / DATE	R.H.	08/16/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	-	-

Calculation Description:

Hydraulic Design Confirmation of Ash Pond Spillway

1.0 Introduction and Purpose

The purpose of this calculation package is to confirm the final hydrauilc design of the spillway structures with respect to capacity, air supply and venting, energy dissipation and erosion protection. The calculations are organized according to the following areas of concern: (1) the overflow spillway; (2) the culvert entrance structure; (3) the culvert conveyance structures; and (4) the riprap channel protection. Additional calculations are used to determine the rating curve of the structure at various river water surface elevations.

2.0 References & Assumptions

1 USBR Water Measurement Manual

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

- 2 H&H Calculation Package for this project
- 3 King and Brater "Handbook of Hydraulics"
- 4 TVA HEC-2 model for the Tennessee River, Chickamauga Reservoir
- 5 National Engineering Handbook Section 11 Drop Spillways
- 6 FHA culvert curves
- 7 HDR Engineering Inc. (2001) "Handbook of Public Water Systems"
- 8 HEC 14, Section 11
- 9 Henderson (1966) "Open Channel Flow"
- 10 HEC 23, Design Guideline 5

Assumptions as noted in each calculation section.

3.0 Area 1 - Overflow Spillway

The overflow spillway is a three-sided structure with individual weir lengths on each side. Sections of concrete wall extended upward between the weir sections to (a) provide an avenue for air supply to the lower weir nappes; and (b) help divide the flow evenly among the four culverts. Failure to provide sufficient air supply to the lower weir nappes can result in excessive negative pressures under the nappes, which may lead to loading fluctuations and subsequent structure vibration. Evenly distributed flow among the four culverts is required as part of their hydraulic design assumptions.

3.1 Free Discharge Capacity

Flow over a free discharging rectangular weir is governed by the Francis equation (Ref. 1):

$$Q = 3.33 (L - 0.2H)H^{\frac{3}{2}}$$

where: Q = discharge (cfs); L = weir length (ft); and H = weir head (ft). The quantity "L-0.2H" is the effective weir length which takes into account the side contractions of the weir nappe. The invert elevation of the weir crest is elevation 698.00 ft and the maximum allowable water surface elevation (WSE) in the pond is 700.00 ft. Therefore, the maximum allowable weir head is 2.00 ft.

3.1.1 Calculate Free Discharge Rating Curve

		South	ı Weir	Middle	e Weir	North	ı Weir	South	Middle	North	Total
	Upstream							Weir	Weir	Weir	Weir
Н	WSE	Actual	Effect.	Actual	Effect.	Actual	Effect.	Q	Q	Q	Q
(ft)	(ft)	Length (ft)	Length (ft)	Length (ft)	Length (ft)	Length (ft)	Length (ft)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	698.00	12.75	12.75	28.83	28.83	12.75	12.75	0.0	0.0	0.0	0.0
0.25	698.25	12.75	12.70	28.83	28.78	12.75	12.70	5.3	12.0	5.3	22.6
0.50	698.50	12.75	12.65	28.83	28.73	12.75	12.65	14.9	33.8	14.9	63.6
0.75	698.75	12.75	12.60	28.83	28.68	12.75	12.60	27.3	62.0	27.3	116.5
1.00	699.00	12.75	12.55	28.83	28.63	12.75	12.55	41.8	95.3	41.8	178.9
1.25	699.25	12.75	12.50	28.83	28.58	12.75	12.50	58.2	133.0	58.2	249.4
1.50	699.50	12.75	12.45	28.83	28.53	12.75	12.45	76.2	174.6	76.2	326.9
1.75	699.75	12.75	12.40	28.83	28.48	12.75	12.40	95.6	219.6	95.6	410.8
2.00	700.00	12.75	12.35	28.83	28.43	12.75	12.35	116.3	267.8	116.3	500.4

699.65

3.1.2 Evaluate Free Discharge Capacity

Design capacity of the spillway is 420 cfs (Ref. 2). The spillway is capable of passing that discharge at an upstream WSE of approximately 699.6 ft, which is below the maximum allowable upstream WSE of 700.00 ft. The free discharge capacity is acceptable.

3.2 Submerged Discharge Capacity

Flow over a submerged weir is governed by the following equation (Ref. 3):

$$Q = Q_1 \left[1 - \left(\frac{H_2}{H_1} \right)^n \right]^{0.385}$$

where: Q = submerged discharge (cfs); Q_1 = free weir discharge at weir head of H_1 (ft); H_2 = height of downstream WSE above weir invert (ft); H_1 = upstream weir head; and n = free weir discharge equation exponent (1.5 for a rectangular weir).

3.2.1 Calculate Maximum Allowable Downstream WSE at Design Flow

3.2.2 Calculate Maximum Allowable River WSE at Design Flow

A downstream WSE of 699.02 ft requires that the culvert conveyance structures are flowing full. Therefore, the difference in WSE from the downstream side of the weir to the river can be determined by the standard headloss equation for the form losses and the Manning's equation for friction losses.

Standard Headloss Eqn:
$$\Delta \mathcal{H} = \mathcal{K} rac{oldsymbol{V}^2}{2g}$$

Manning's Eqn:
$$Q = \frac{1.49}{n} AR^{\frac{2}{3}} S^{\frac{1}{2}}$$

where: ΔH = energy loss due to a form loss (ft); K = form loss coefficient for specific form geometry (available from standard hydraulic texts); V = average conduit velocity (fps); g = acceleration due to gravity (ft²/s); Q = discharge (cfs); n = Manning's coefficient; A = flow area (ft²); R = hydraulic radius (ft); and S = friction slope (headloss per unit length) (ft/ft).

3.2.2.1 Calculate Form and Friction Losses

Form			Q per	Culvert	Culvert	Ave.	
_	K	Q	Culvert	Width	Height	Velocity	ΔH
Loss	()	(cfs)	(cfs)	(ft)	(ft)	(fps)	(ft)
Culvert Entrance	0.5	420	105	6	4	4.4	0.15
Culvert S-Bend	4.0	420	105	6	4	4.4	1.19
Dissipator Contr.	0.1	420	105	6	3.5	5.0	0.04
Culvert Exit	1.0	420	105	6	3.5	5.0	0.39
						Total	1.76

Friction			Q per	Culvert	Culvert	Ave.			
	n	Q	Culvert	Width	Height	Velocity	S	Length	ΔH
Loss	()	(cfs)	(cfs)	(ft)	(ft)	(fps)	(ft/ft)	(ft)	(ft)
6' x 4' Culvert	0.012	420	105	6	4	4.4	0.0010	85.0	0.08
8' x 18' Drop Box	0.012	420	210	8	18	1.5	0.0000	12.5	0.00
6' x 5' Culvert	0.012	420	105	6	5	3.5	0.0005	60.0	0.03
								Total	0.11

Total Energy Losses (ft) = 1.88 (Assumes WSE variations across lateral weir are negligible at these flow depths.)

3.2.3 Evaluate Submerged Discharge Capacity

Subtracting the culvert conveyance losses from the maximum allowable downstream WSE yields a maximum allowable river WSE of 699.02 ft - 1.88 ft = 697.14 ft.

Tennesse River flow data is available at river miles 527.8 and 529.9 (Ref. 4), as shown below. The overflow spillway enters the river approximately halfway between these two locations. Assuming the river WSE at the spillway location can be estimated as a straight average of the upstream and downstream values, the following tailwater rating curve is established.

Flood		WSE at	WSE at			Max.	Est. 25-yr		Est. 40-	
Event		River Mile	River Mile			Allowable	Flood		yr Flood	
Event	Flow	527.8	529.9	Average	Flow	WSE	Flow	WSE	Flow	WSE
	(cfs)	(ft)	(ft)	(ft)	(cfs)	(ft)	(cfs)	(ft)	(cfs)	(ft)
2-Year	122,000	690.3	691.2	690.8	100,000	697.56	176,250	706.0	184,500	706.0
5-Year	153,000	692.7	693.6	693.2	280,000	697.56	176,250	690.0	184,500	690.0
10-Year	168,000	693.9	694.9	694.4						
50-Year	190,000	696.3	697.2	696.8						
100-Year	200,000	697.0	698.0	697.5						
500-Year	260,000	700.8	701.8	701.3						

As shown on the tailwater rating curve, the overflow spillway design is able to pass the design flow against river WSEs equivalent to the 100-yr flood elevation. The submerged discharge capacity is acceptable.

3.3 Lower Weir Nappe Air Supply

Lower weir nappe vent area supply requirements are provided in Ref. 5 and shown below. Pressure differentials of 0.3 ft of water are permissible, but calculations have been based on providing a pressure differential of 0.1 feet of water for conservatism. Weir head is 699.8 ft - 698.00 ft = 1.8 ft per section 3.1.2.

Allowable pressure differential, p (ft of water) = 0.1

			Required	Required
		Height	Vent Area	Vent Area
Weir	Length (ft)	(ft)	(in²)	(ft ²)
North	12.75	1.8	2.51	0.017
Middle	28.83	1.8	5.67	0.039
South	12.75	1.8	2.51	0.017
		Total	10.68	0.07

Supplied vent area is shown below and equals 2 x 7'3" x 1'9" = 25.375 ft². Vent area supply is acceptable.

	CLIENT	TVA
IVI	PROJECT	Watts Bar Ash Pond
nith	DETAIL	Proposed Ash Pond Spillway
	PROJECT NO.	92016.2202
TVA CALCULATI	ION PACKAGE	GENWBFFESCDX0000002012001005

COMPUTED BY / DATE	M.E.A.	08/15/12
CHECKED BY / DATE	R.H.	08/16/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	-	-

Calculation Description:

Hydraulic Design Confirmation of Ash Pond Spillway

4.0 Area 2 - Culvert Entrance Structure

The culvert entrance structure must deliver flow into the culverts without submerging the overflow spillway which would reduce its capacity. For normal river WSEs, the maximum entrance structure WSE is produced when the culverts are operating under inlet control. Conditions where the river WSE is controlling was evaluated in section 3.2.

4.1 Free Discharge WSE

4.1.1 Calculate WSE Immediately Upstream of Culvert Entrance

The WSE required to deliver flow into a culvert under inlet control is determined using Chart 8B from Ref. 6 as shown below.

Design Discharge (cfs) = 420 No. of Culverts = 4 Culvert Discharge, Q (cfs) = 105 Culvert Width, B (ft) = 6 Q/B (cfs/ft) = 17.5 Culvert Height, D (ft) = 4 Hw/D (per chart) = 0.85 {conservative} Upstream Depth, Hw (ft) =

Inv. Elev. of Culvert Entrance (ft) = 692.75 WSE at Culverts Entrance (ft) = 696.15

4.1.2 Calculate WSE Change Across Lateral Weir

The north and south weir segments are oriented perpendicular to the overall flow direction of the spillway so these weir segments will behave as lateral weirs, which at treament plants are known as launders. The downstream WSE difference across a zero slope launder can be calculated using the standard equation as presented in Ref. 7.

$$H_L = \sqrt{2\frac{h_c^3}{h_o} + h_o^2}$$

where H_L = water depth at upstream end of launder (ft); H_c = critical depth (ft); and h_o = depth at downsteam end of launder (ft).

Total Flow Rate (cfs) =	420.00	Channel Width (ft) =	6.00	
North Weir Length (ft) =	12.75	Unit Discharge (cfs/ft) =	16.43	
Middle Weir Length (ft) =	28.83	h_c (ft) =	2.03	
South Weir Length (ft) =	12.75	h_o (ft) =	3.40	(per section 4.1.1)
Total Weir Length (ft) =	54.33	H_L (ft) =	4.06	
Side Weir Flow Rate (cfs) =	98.56	WSE at Upstream End (ft) =	696.81	

4.1.3 Evaluate Weir Freeboard

The above calculations show that the WSE at the upstream end of the north and south weirs will be 696.81 ft. The result is 698.00 ft - 696.81 ft = 1.19 ft of freeboard on the weir crest. The design of the culvert entrance channel is acceptable.

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Proposed Ash Pond Spillway
PROJECT NO.	92016.2202

COMPUTED BY / DATE	M.E.A.	08/15/12
CHECKED BY / DATE	R.H.	08/16/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	_	-

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

Calculation Description:

Hydraulic Design Confirmation of Ash Pond Spillway

5.0 Area 3 - Culvert Conveyance Structures

The culvert conveyance structures must pass flow to the downstream riprap channel while dissipating the energy gained from the drop in elevation. Failure to do so would result in supercritical flow at the exit of the culvert which would exceed the velocity limitations of the riprap. Energy dissipation will be achieved using an outlet weir that will force a hydraulic jump within the downstream section of culvert at the drop exit.

5.1 Determine Flow Conditions Exiting Drop

At the design discharge, the trajectory of flow exiting the upstream section of culvert will impact the vertical wall of the drop structure and some energy will be dissipated. A conservative approach is to assume that no energy dissipation occurs and that the drop height is equal to the distance from the culvert entrance structure invert to the drop structure invert (The conservatism is necessary since the flow approaching the drop is supercritical, as shown below using Manning's eqn, per section 3.2.2, and the available design formulas assume subcritical flow approaching the drop). The flow conditions approaching the outlet weir can be determined using the "Simple Straight Drop" formulas presented in Ref. 8.

			Q per	Q per Unit							
Culvert	No. of		Culvert	Width	Normal	Slope					Froude
Width (ft)	Culverts	Q (cfs)	(cfs)	(cfs/ft)	Depth (ft)	(ft/ft)	n	R (ft)	V (fps)	Q (cfs)	Number
6	4	420	105	17.50	1.83	0.005	0.012	1.14	9.6	420.0	1.25

5.1.1 Calculate the Drop Number

$$N_d = \frac{q^2}{gh_o^3}$$

where: N_d = drop number; q = unit discharge (cfs/ft); g = acceleration due to gravity (ft/s²); and h_o = drop height (ft).

Design Dicharge (cfs) = 420.0

No. of Culverts = 4

Discharge per Culvert (cfs) = 105.0

Culvert Width (ft) = 6.0

Unit Discharge, q (cfs/ft) = 17.5

Culvert Entrance Inv. Elev. (ft) = 692.75

Drop Structure Inv. Elev. (ft) = 685.37

Drop Height, h_o (ft) = 7.38

 $N_d = 0.024$

5.1.2 Calculate the Flow Depth and Velocity Exiting Drop

Flow depth exiting the drop is calculated by:

$$y_3 = 1.66 h_o N_d^{0.27}$$

where y_3 = flow depth exiting the drop (ft).

 y_3 (ft) = 4.46

Discharge per Culvert (cfs) = 105.00

Drop Exit Velocity (fps) = 3.93

Froude No. = 0.33

Drop Exit Inv. Elev. (ft) = 685.37

5.2 Determine Flow Conditions in Downstream Culvert

The outlet weir at the end of the downstream culvert will force subcritical flow to occur for the entire length of conduit. Use backwater calcs to determine flow profile from the weir upstream to the drop exit.

5.2.1 Calculate WSE at Outlet Weir

Flow over the outlet weir is governed by the Francis equation (Ref. 1) without the weir length modification for the side contractions of the weir nappe (Ref.1):

$$Q = 3.33LH^{\frac{3}{2}}$$

where: Q = discharge (cfs); L = weir length (ft); and H = weir head (ft).

Design Dicharge (cfs) = 420.0No. of Culverts = 4Discharge per Culvert (cfs) = 105.0Weir Length (ft) = 6.0H (ft) = 3.02Culvert Outlet Inv. Elev. (ft) = 685.21Weir Height (ft) = 1.50Weir Inv. Elev. (ft) = 686.71WSE (ft) = 689.73

5.2.2 Calculate WSE at Drop Exit

The standard step method can be used to calculate the WSE at the drop exit and can be found in standard hydraulic texts. The basic formula is:

$$S_f - S_o = \frac{y_1 - y_2 + \frac{V_1}{2g} - \frac{V_2}{2g}}{L}$$

where S_f = friction slope; S_o = channel slope; y_1 = upstream depth; y_2 = downstream depth; V_1 = upstream velocity; V_2 = downstream velocity; V_3 = downstream velocity;

										So-		
_	y (ft)	A (ft ²)	P (ft)	R (ft)	C ²	V (fps)	$V^2/2g$ (ft)	E (ft)	V^2/C^2R	$(V^2/C^2R)m$	∆E (ft)	L (ft)
	4.52	27.14	15.05	1.80	18767	3.87	0.23	4.76	0.000442			
										0.00458	0.15	32.00
	4.68	28.11	15.37	1.83	18854	3.74	0.22	4.90	0.00040			

Depth at Drop Exit (ft) = 4.68Culvert Inv. Elev. at Drop Exit (ft) = 685.37WSE at Drop Exit (ft) = 690.05

5.3 Check Overall Culvert Conveyance Design

Since the outlet weir backwaters the drop exit, i.e. the drop exit WSE generated by the outlet weir is greater than that generated by the drop, the flow will remain subcritical throughout the downstream culvert length and the energy gained from the drop will be dissipated at the drop itself. **The design is acceptable.**

5.4 Check Vent Supply Area

The flow within the drop structure will entrain a significant amount of air and needs a constant air supply to remain in a stable flow regime and not generate fluctuating loads. While air will be supplied through the upstream culvert the dedicated vents at the top of each drop have been provided to ensure sufficient air supply. The same procedure used in section 3.3 can be used.

Allowable pressure differential, p (ft of water) = 0.1

Design Dicharge (cfs) = 420.0

No. of Culverts = 4

Discharge per Culvert (cfs) = 105.0

Weir Length (ft) = 6.0

 H_e (ft) = 3.02

Required Vent Area (in 2) = 7.78

Minimum Vent Diameter (in) = 3.15

Vent diameter provided is 4 inches. Vent design is acceptable.

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Proposed Ash Pond Spillway
PROJECT NO.	92016.2202

COMPUTED BY / DATE	M.E.A.	08/15/12
CHECKED BY / DATE	R.H.	08/16/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	_	-

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

Calculation Description:

Hydraulic Design Confirmation of Ash Pond Spillway

6.0 Area 4 - Riprap Channel Protection

The steep slopes of the embankment downstream of the culvert conveyance structures will produce high velocities which will erode the embankment if it is not protected by riprap. The design of riprap channels for embankment flows is performed according to Ref. 10.

6.1 Check Adequacy of Riprap Design

Perform calculations for maximum slope of 14.6% and apply uniform across entire channel.

6.1.1 Compute interstitial velocity and average velocity

$$V_{i} = 2.48 \sqrt{gd_{50}} \frac{S^{0.58}}{C_{u}^{2.22}}$$

where: V_i = interstitial velocity (fps); g = accelearation due to gravity (ft/s²); d_{50} = median rock size; S = embankment slope; and C_u = coefficient of uniformity of the riprap, d_{60}/d_{10} .

$$g (ft/s^2) = 32.2$$

 $d_{50} (in) = 15$
 $d_{50} (ft) = 1.25$
 $S (ft/ft) = 0.146$
 $C_u = 2.1$
 $V_i (fps) = 0.99$

$$V_{ove} = \eta V_i$$

porosity of the rock, $\eta =$ V_{ave} (fps) = 0.45

6.1.2 Compute the average flow depth (y) as if all the flow is contained within the thickness of the riprap layer (t) (i.e., t = y)

$$y = q_f / V_{ave}$$

where q_f = unit discharge (cfs/ft)

Minimum Embankment Flow Width (ft) =
$$37.17$$

Design Discharge (cfs) = 420.00
 q_f (cfs/ft) = 11.30
 y (ft) = 25.30

Check if y is greater than the riprap thickness, t:

y is greater than t. Go to next step.

6.1.3 Find allowable flow depth over the riprap.

$$h = \frac{0.06(S_g - 1)d_{50} \tan \phi}{0.97S}$$

where h = allowable flow depth (ft); S_g = specific gravity of the riprap; and ϕ = angle of repose of the riprap (deg).

$$S_g = 2.65$$

 d_{50} (ft) = 1.25
 ϕ (deg) = 42
 $S = 0.146$
 h (ft) = 0.79

6.1.4 Calculate the Manning roughness coefficient, n

$$n = 0.034 (d_{50})^{\frac{1}{6}}$$

$$n = 0.035$$

6.1.5 Calculate unit discharge, q_1 , that can flow over the riprap using Manning's equation.

$$q_1 = \frac{1.486}{n} h^{\frac{5}{3}} S^{\frac{1}{2}}$$

$$q_1 (cfs/ft) = 10.789$$

6.1.6 Calculate the required interstitial flow, q_2 , through the riprap and the flow provided by the riprap thickness, q_2

$$|q_2 = q_f - q_1|$$

$$q_2 (cfs/ft) = 0.511$$

$$q = tV_{ave}$$

6.1.7 Determine Adequacy of Design

Since q₂ is less than q, the riprap design is acceptable.

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Proposed Ash Pond Spillway
PROJECT NO.	92016.2202

COMPUTED BY / DATE	M.E.A.	08/15/12
CHECKED BY / DATE	R.H.	08/16/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	_	-

Calculation Description:

Hydraulic Design Confirmation of Ash Pond Spillway

7.0 Spillway Rating Curve

In order to provide a means for TWA to approximate the flow discharging through the spillway a rating curve is required. The rating curve provides the correlation between WSE upstream of the weir and the spillway discharge. Since river WSEs are capable of backwatering the spillway, at certain river WSEs different curves are required.

7.1 Calculate Spillway Rating Curve

7.1.1 Determine Maximum Free Discharge River WSE

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

Per section 3.2.2.1, the headloss through the culvert conveyance structures when fully submerged is 1.88 ft. Subtract this value from spillway weir invert elevation to determine maximum free discharge river WSE.

Culvert Conveyance Strucutre Headloss (ft) = 1.88 Spillway Weir Inv. Elev. (ft) = 698.00 Maximum Free Discharge River WSE (ft) = 696.12

7.1.2 Calculate Free Discharge Rating Curve

Calculations are per section 3.1.1.

7.1.3 Calculate Submerged Discharge Rating Curves

Calculations are per section 3.2. Formulas are valid up to a WSE upstream of the spillway weir of 700 ft, which is the top of the spillway structure walls. (D/S = downstream; U/S = upstream)

River WSE	Culvert	WSE D/S		WSE U/S					
(ft)	Losses	of Weir	H_2	of Weir	H_1	H_2/H_1	Q/Q_1	Q_1	Q
	(ft)	(ft)	(ft)	(ft)	(ft)			(cfs)	(cfs)
696.5	1.88	698.38	0.38	698.38	0.38	1.00	0.00	42.20	0.00
696.5	1.88	698.38	0.38	698.50	0.50	0.76	0.66	63.61	41.87
696.5	1.88	698.38	0.38	698.75	0.75	0.51	0.84	116.54	98.10
696.5	1.88	698.38	0.38	699.00	1.00	0.38	0.90	178.92	161.45
696.5	1.88	698.38	0.38	699.25	1.25	0.30	0.93	249.35	232.35
696.5	1.88	698.38	0.38	699.50	1.50	0.25	0.95	326.86	310.14
696.5	1.88	698.38	0.38	699.75	1.75	0.22	0.96	410.74	394.21
696.5	1.88	698.38	0.38	700.00	2.00	0.19	0.97	500.41	484.03
697.0	1.88	698.88	0.88	698.88	0.88	1.00	0.00	147.90	0.00
697.0	1.88	698.88	0.88	699.00	1.00	0.88	0.51	178.92	91.36
697.0	1.88	698.88	0.88	699.25	1.25	0.70	0.71	249.35	176.79
697.0	1.88	698.88	0.88	699.50	1.50	0.59	0.79	326.86	259.78
697.0	1.88	698.88	0.88	699.75	1.75	0.50	0.84	410.74	346.60
697.0	1.88	698.88	0.88	700.00	2.00	0.44	0.88	500.41	438.15
697.5	1.88	699.38	1.38	699.38	1.38	1.00	0.00	288.82	0.00
697.5	1.88	699.38	1.38	699.50	1.50	0.92	0.44	326.86	143.36
697.5	1.88	699.38	1.38	699.75	1.75	0.79	0.63	410.74	258.29
697.5	1.88	699.38	1.38	700.00	2.00	0.69	0.72	500.41	360.56
697.7	1.88	699.58	1.58	699.58	1.58	1.00	0.00	353.04	0.00
697.7	1.88	699.58	1.58	699.75	1.75	0.90	0.47	410.74	193.79
697.7	1.88	699.58	1.58	700.00	2.00	0.79	0.63	500.41	313.91

7.1.4 Plot Rating Curves

CLIENT TVA

PROJECT Watts Bar Ash Pond

DETAIL Proposed Ash Pond Spillway

PROJECT NO. 92016.2202

 COMPUTED BY / DATE
 R.H.
 08/16/12

 CHECKED BY / DATE
 M.E.A.
 08/16/12

 REVISION NO. / DATE

 REVIEWED BY / DATE

Calculation Description:

Watts Bar Ash Pond Spillway Rating Curve

8.0 Spillway Rating Curve

Purpose: Develop Ash Pond Spillway Rating Curve for use in measuring discharge flowrate with staff gage reading.

Method: Increase height above weir increments to 0.01 ft from table developed for spillway design in Section 3.1.1.

Assumptions: Chickamauga Lake water surface elevation is less than 696.12 ft (refer to Section 3.2.3 for lake flood stages).

Rating curve includes all discharge flowrates not exceeding the primary spillway capacity up to WSE 700.00 ft.

Results: The Watt Bar Ash Pond post-construction rating curve in tabular and graphical formats are below in Table 1 and Figure 1.

Table 8-1. Watts Bar Ash Pond Primary Spillway Stage-Discharge Rating Table

		South	ı Weir	Middle	e Weir	North	Weir	South	Middle	North	Total
								Weir	Weir	Weir	Weir
Н	Upstream	Actual	Effect.	Actual	Effect.	Actual	Effect.	Q	Q	Q	Q
(ft)	WSE (ft)	Length (ft)	(cfs)	(cfs)	(cfs)	(cfs)					
0.00	698.00	12.75	12.75	28.83	28.83	12.75	12.75	0.0	0.0	0.0	0
0.01	698.01	12.75	12.75	28.83	28.83	12.75	12.75	0.0	0.1	0.0	0
0.02	698.02	12.75	12.75	28.83	28.83	12.75	12.75	0.1	0.3	0.1	1
0.03	698.03	12.75	12.74	28.83	28.83	12.75	12.74	0.2	0.5	0.2	1
0.04	698.04	12.75	12.74	28.83	28.83	12.75	12.74	0.3	0.8	0.3	1
0.05	698.05	12.75	12.74	28.83	28.82	12.75	12.74	0.5	1.1	0.5	2
0.06	698.06	12.75	12.74	28.83	28.82	12.75	12.74	0.6	1.4	0.6	3
0.07	698.07	12.75	12.74	28.83	28.82	12.75	12.74	0.8	1.8	0.8	3
0.08	698.08	12.75	12.73	28.83	28.82	12.75	12.73	1.0	2.2	1.0	4
0.09	698.09	12.75	12.73	28.83	28.82	12.75	12.73	1.1	2.6	1.1	5
0.10	698.10	12.75	12.73	28.83	28.81	12.75	12.73	1.3	3.0	1.3	6
0.11	698.11	12.75	12.73	28.83	28.81	12.75	12.73	1.5	3.5	1.5	7
0.12	698.12	12.75	12.73	28.83	28.81	12.75	12.73	1.8	4.0	1.8	8
0.13	698.13	12.75	12.72	28.83	28.81	12.75	12.72	2.0	4.5	2.0	8
0.14	698.14	12.75	12.72	28.83	28.81	12.75	12.72	2.2	5.0	2.2	9
0.15	698.15	12.75	12.72	28.83	28.80	12.75	12.72	2.5	5.6	2.5	10
0.16	698.16	12.75	12.72	28.83	28.80	12.75	12.72	2.7	6.1	2.7	12
0.17	698.17	12.75	12.72	28.83	28.80	12.75	12.72	3.0	6.7	3.0	13
0.18	698.18	12.75	12.71	28.83	28.80	12.75	12.71	3.2	7.3	3.2	14
0.19	698.19	12.75	12.71	28.83	28.80	12.75	12.71	3.5	7.9	3.5	15
0.20	698.20	12.75	12.71	28.83	28.79	12.75	12.71	3.8	8.6	3.8	16
0.21	698.21	12.75	12.71	28.83	28.79	12.75	12.71	4.1	9.2	4.1	17
0.22	698.22	12.75	12.71	28.83	28.79	12.75	12.71	4.4	9.9	4.4	19
0.23	698.23	12.75	12.70	28.83	28.79	12.75	12.70	4.7	10.6	4.7	20
0.24	698.24	12.75	12.70	28.83	28.79	12.75	12.70	5.0	11.3	5.0	21
0.25	698.25	12.75	12.70	28.83	28.78	12.75	12.70	5.3	12.0	5.3	23
0.26	698.26	12.75	12.70	28.83	28.78	12.75	12.70	5.6	12.7	5.6	24
0.27	698.27	12.75	12.70	28.83	28.78	12.75	12.70	5.9	13.4	5.9	25
0.28	698.28	12.75	12.69	28.83	28.78	12.75	12.69	6.3	14.2	6.3	27
0.29	698.29	12.75	12.69	28.83	28.78	12.75	12.69	6.6	15.0	6.6	28
0.30	698.30	12.75	12.69	28.83	28.77	12.75	12.69	6.9	15.7	6.9	30
0.31	698.31	12.75	12.69	28.83	28.77	12.75	12.69	7.3	16.5	7.3	31
0.32	698.32	12.75	12.69	28.83	28.77	12.75	12.69	7.6	17.3	7.6	33
0.33	698.33	12.75	12.68	28.83	28.77	12.75	12.68	8.0	18.2	8.0	34
0.34	698.34	12.75	12.68	28.83	28.77	12.75	12.68	8.4	19.0	8.4	36
0.35	698.35	12.75	12.68	28.83	28.76	12.75	12.68	8.7	19.8	8.7	37
0.36	698.36	12.75	12.68	28.83	28.76	12.75	12.68	9.1	20.7	9.1	39
0.37	698.37	12.75	12.68	28.83	28.76	12.75	12.68	9.5	21.6	9.5	41
0.38	698.38	12.75	12.67	28.83	28.76	12.75	12.67	9.9	22.4	9.9	42
0.39	698.39	12.75	12.67	28.83	28.76	12.75	12.67	10.3	23.3	10.3	44
0.40	698.40	12.75	12.67	28.83	28.75	12.75	12.67	10.7	24.2	10.7	46

Table 8-1. Watts Bar Ash Pond Primary Spillway Stage-Discharge Rating Table

H			South	Weir	Middle	e Weir	North	Weir	South	Middle	North	Total
Proceedings Proceedings Process Proces												
0.41 698.41 12.75 12.67 28.83 28.75 12.75 12.67 11.5 26.1 11.5 49 0.43 698.43 12.75 12.67 28.83 28.75 12.75 12.66 11.9 27.0 11.9 51 0.44 698.44 12.75 12.66 28.83 28.75 12.75 12.66 11.9 27.0 11.9 51 0.44 698.44 12.75 12.66 28.83 28.75 12.75 12.66 12.7 28.9 12.7 53 0.45 698.45 12.75 12.66 28.83 28.74 12.75 12.66 12.3 27.9 12.3 53 0.45 698.46 12.75 12.66 28.83 28.74 12.75 12.66 13.6 13.2 29.9 13.2 56 0.46 698.46 12.75 12.66 28.83 28.74 12.75 12.66 13.6 13.2 29.9 13.2 56 0.46 698.46 12.75 12.65 28.83 28.74 12.75 12.66 13.6 30.8 13.6 58 0.48 698.49 12.75 12.65 28.83 28.74 12.75 12.66 13.6 30.8 13.6 58 0.48 698.49 12.75 12.65 28.83 28.74 12.75 12.66 13.6 30.8 13.6 58 0.49 698.49 12.75 12.65 28.83 28.73 12.75 12.65 14.9 33.8 14.9 6 0.50 698.50 12.75 12.65 28.83 28.73 12.75 12.65 14.9 33.8 14.9 6 0.50 698.50 12.75 12.65 28.83 28.73 12.75 12.65 15.3 34.8 15.3 66 0.52 698.55 12.75 12.65 28.83 28.73 12.75 12.66 15.3 34.8 15.3 66 0.52 698.55 12.75 12.64 28.83 28.73 12.75 12.64 12.6 36.9 16.2 69 0.54 698.55 12.75 12.64 28.83 28.73 12.75 12.64 16.2 36.9 16.2 69 0.54 698.55 12.75 12.64 28.83 28.73 12.75 12.64 16.2 36.9 16.2 69 0.55 698.55 12.75 12.64 28.83 28.73 12.75 12.64 17.2 39.0 17.7 73 0.55 698.55 12.75 12.64 28.83 28.73 12.75 12.64 17.2 39.0 17.7 73 0.55 698.55 12.75 12.64 28.83 28.72 12.75 12.64 17.2 39.0 17.7 73 0.55 698.55 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.55 698.55 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.59 698.59 12.75 12.63 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.59 698.59 12.75 12.63 28.83 28.71 12.75 12.63 19.1 43.3 19.1 18.0 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.63 19.1 43.3 19.1 18.0 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.63 20.9 45.6 20.0 86 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.63 20.9 45.6 20.0 86 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.62 21.0 47.8 21.0 90 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.62 21.5 4.9 90 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.65 21.5 4.84 22.5 12.6 12.6 28.83 28.71 12.75 12.60 22.5 58.83 28.71 12.75 12.60	Н	Upstream	Actual	Effect.	Actual	Effect.	Actual	Effect.	Q	Q	Q	Q
0.42 698.42 12.75 12.66 28.83 28.75 12.75 12.66 11.9 27.0 11.9 11.5 49 0.44 698.44 12.75 12.66 28.83 28.75 12.75 12.66 12.3 27.9 12.3 53 0.46 698.45 12.75 12.66 28.83 28.74 12.75 12.66 12.7 28.9 12.7 53 0.47 698.45 12.75 12.66 28.83 28.74 12.75 12.66 13.2 29.9 13.2 55 0.48 698.45 12.75 12.66 28.83 28.74 12.75 12.66 13.2 29.9 13.2 55 0.48 698.45 12.75 12.66 28.83 28.74 12.75 12.66 13.6 30.8 13.6 58 0.48 698.48 12.75 12.65 28.83 28.74 12.75 12.65 14.0 31.8 14.0 60 0.49 698.49 12.75 12.65 28.83 28.74 12.75 12.65 14.9 33.8 14.9 64 0.51 698.51 12.75 12.65 28.83 28.73 12.75 12.65 14.9 33.8 14.9 64 0.52 698.52 12.75 12.65 28.83 28.73 12.75 12.65 14.9 33.8 14.9 64 0.52 698.52 12.75 12.64 28.83 28.73 12.75 12.65 15.8 35.9 15.8 67 0.54 698.54 12.75 12.64 28.83 28.73 12.75 12.64 16.7 38.0 16.7 73 0.55 698.55 12.75 12.64 28.83 28.73 12.75 12.64 17.2 30.0 17.2 73 0.56 698.55 12.75 12.64 28.83 28.72 12.75 12.64 17.6 40.1 17.6 75 0.59 698.55 12.75 12.64 28.83 28.72 12.75 12.64 17.6 40.1 17.6 75 0.59 698.55 12.75 12.64 28.83 28.72 12.75 12.64 17.6 40.1 17.6 75 0.59 698.55 12.75 12.63 28.83 28.72 12.75 12.64 17.6 40.1 17.6 75 0.59 698.55 12.75 12.63 28.83 28.72 12.75 12.64 17.6 40.1 17.6 75 0.59 698.55 12.75 12.63 28.83 28.71 12.75 12.63 18.6 42.2 18.6 79 0.59 698.56 12.75 12.63 28.83 28.71 12.75 12.63 18.6 42.2 18.6 79 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.63 18.6 42.2 18.6 79 0.60 698.66 12.75 12.63 28.83 28.71 12.75 12.63 19.5 44.4 19.5 0.60 698.66 12.75 12.63 28.83 28.71 12.75 12.63									(cfs)			
0.44 698.43 12.75 12.66 28.83 28.75 12.75 12.66 11.9 27.0 11.9 51 0.44 698.44 12.75 12.66 28.83 28.75 12.75 12.66 12.7 28.9 12.7 54 0.45 698.45 12.75 12.66 28.83 28.74 12.75 12.66 13.6 12.3 27.9 13.2 55 0.47 698.47 12.75 12.66 28.83 28.74 12.75 12.66 13.6 30.8 13.6 58 0.47 698.49 12.75 12.66 28.83 28.74 12.75 12.66 13.6 30.8 13.6 58 0.48 698.49 12.75 12.65 28.83 28.74 12.75 12.66 13.6 30.8 13.6 58 0.49 698.49 12.75 12.65 28.83 28.74 12.75 12.65 14.0 31.8 14.0 0.50 698.50 12.75 12.65 28.83 28.74 12.75 12.65 14.5 32.8 14.0 0.51 698.51 12.75 12.65 28.83 28.74 12.75 12.65 14.5 32.8 14.9 50 0.52 698.52 12.75 12.65 28.83 28.73 12.75 12.65 14.5 32.8 14.9 38.8 14.9 62 0.51 698.51 12.75 12.65 28.83 28.73 12.75 12.65 15.3 34.8 15.3 66 0.52 698.52 12.75 12.65 28.83 28.73 12.75 12.65 15.3 34.8 15.3 66 0.51 698.51 12.75 12.64 28.83 28.73 12.75 12.64 16.2 36.9 15.8 35.9 15.8 67 0.53 698.55 12.75 12.64 28.83 28.73 12.75 12.64 16.2 36.9 16.7 73.0 16.7 73.0 16.5 698.55 12.75 12.64 28.83 28.73 12.75 12.64 17.2 30.0 16.7 73.0 16.7 16.0 16.7 30.0 16.7 73.0 16.5 698.55 12.75 12.64 28.83 28.73 12.75 12.64 17.2 30.0 16.7 73.0 16.5 698.55 12.75 12.64 28.83 28.73 12.75 12.64 18.1 41.2 18.1 77.0 16.5 698.55 12.75 12.64 28.83 28.77 12.75 12.64 18.1 41.2 18.1 77.0 16.5 698.55 12.75 12.64 28.83 28.77 12.75 12.64 18.1 41.2 18.1 77.0 16.5 698.55 12.75 12.64 28.83 28.77 12.75 12.64 18.1 41.2 18.1 77.0 16.5 698.55 12.75 12.64 28.83 28.77 12.75 12.64 18.1 41.2 18.1 77.0 16.5 698.5 12.75 12.64 28.83 28.77 12.75 12.64 18.1 41.2 18.1 77.0 16.5 698.5 12.75 12.6 12.6 28.83 28.77 12.75 12.6 18.6 42.2 18.6 79.0 16.0 698.5 12.75 12.6 12.6 28.83 28.77 12.75 12.6 19.5 44.4 19.5 28.0 16.0 698.5 12.75 12.6 12.6 28.8 28.77 12.75 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6												
0.45												
0.46 698.45 12.75 12.66 28.83 28.74 12.75 12.66 13.7 28.9 12.7 54 0.47 698.47 12.75 12.66 28.83 28.74 12.75 12.66 13.6 30.8 31.6 58 0.48 698.49 12.75 12.65 28.83 28.74 12.75 12.66 13.6 30.8 31.6 58 0.49 698.49 12.75 12.65 28.83 28.74 12.75 12.65 14.5 32.8 14.0 60 0.50 698.60 12.75 12.65 28.83 28.74 12.75 12.65 14.5 32.8 34.5 62 0.51 698.51 12.75 12.65 28.83 28.73 12.75 12.65 14.5 32.8 34.9 64 0.51 698.51 12.75 12.65 28.83 28.73 12.75 12.65 15.2 34.8 15.3 66 0.52 698.52 12.75 12.65 28.83 28.73 12.75 12.65 15.2 34.8 15.3 66 0.54 698.54 12.75 12.64 28.83 28.73 12.75 12.64 16.2 36.9 15.8 67 0.55 698.55 12.75 12.64 28.83 28.73 12.75 12.64 16.2 36.9 16.7 73 0.55 698.56 12.75 12.64 28.83 28.73 12.75 12.64 17.2 30.0 17.2 73 0.55 698.57 12.75 12.64 28.83 28.72 12.75 12.64 17.2 30.0 17.2 73 0.55 698.59 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.57 698.57 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.59 698.59 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.59 698.59 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.59 698.59 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.59 698.59 12.75 12.63 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.59 698.59 12.75 12.63 28.83 28.77 12.75 12.63 19.1 43.3 19.1 81 0.61 698.61 12.75 12.63 28.83 28.71 12.75 12.63 29.0 45.6 20.0 88 0.63 698.62 12.75 12.63 28.83 28.71 12.75 12.63 29.0 45.6 20.0 88 0.64 698.64 12.75 12.63 28.83 28.71 12.75 12.63 29.0 45.6 20.0 88 0.65 698.66 12.75 12.63 28.83 28.71 12.75 12.63 29.0												
0.46 698.46 12.75 12.66 28.83 28.74 12.75 12.66 13.2 29.9 13.2 55 60.47 698.67 12.75 12.66 28.83 28.74 12.75 12.65 13.6 30.8 13.6 58 60.49 698.48 12.75 12.66 28.83 28.74 12.75 12.65 14.0 31.8 14.0 60 20.49 698.49 12.75 12.65 28.83 28.74 12.75 12.65 14.0 31.8 14.0 60 20.49 698.49 12.75 12.65 28.83 28.74 12.75 12.65 14.5 32.8 14.5 60 20.50 60												
0.48 698.48 12.75 12.66 28.83 28.74 12.75 12.66 13.6 30.8 13.6 58 0.49 698.49 12.75 12.65 28.83 28.74 12.75 12.65 14.0 31.8 14.0 60 0.50 698.50 12.75 12.65 28.83 28.74 12.75 12.65 14.9 31.8 14.0 60 0.51 698.51 12.75 12.65 28.83 28.73 12.75 12.65 14.9 31.8 14.5 62 0.51 698.51 12.75 12.65 28.83 28.73 12.75 12.65 14.9 31.8 14.5 62 0.52 698.52 12.75 12.64 28.83 28.73 12.75 12.65 15.8 35.9 15.8 67 0.53 698.53 12.75 12.64 28.83 28.73 12.75 12.64 16.2 36.9 16.2 69 0.54 698.54 12.75 12.64 28.83 28.73 12.75 12.64 16.7 38.0 17.7 73 0.56 698.55 12.75 12.64 28.83 28.72 12.75 12.64 17.2 39.0 17.2 73 0.57 698.57 12.75 12.64 28.83 28.72 12.75 12.64 17.2 39.0 17.2 73 0.58 698.58 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.58 698.59 12.75 12.63 28.83 28.72 12.75 12.63 19.1 43.3 19.1 43.3 19.1 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.63 19.1 43.3 19.1 43.3 19.1 0.60 698.61 12.75 12.63 28.83 28.71 12.75 12.63 20.0 45.6 20.0 86 0.62 698.62 12.75 12.63 28.83 28.71 12.75 12.63 20.0 45.6 20.0 86 0.63 698.64 12.75 12.63 28.83 28.71 12.75 12.62 22.0 50.6 0.64 698.64 12.75 12.63 28.83 28.71 12.75 12.62 22.0 50.0 46.6 20.0 698.60 12.75 12.63 28.83 28.71 12.75 12.62 22.0 50.0 46.6 20.0 698.60 12.75 12.63 28.83 28.71 12.75 12.62 22.0 50.0 46.6 20.0 698.60 12.75 12.63 28.83 28.71 12.75 12.62 22.5 50.0 20.0 60.6 698.63 12.75 12.63 28.83 28.71 12.75 12.62 22.5 50.0 40.6 698.64 12.75 12.62 28.83 28.71 12.75 12.62 22.0 50.0 46.6 20.0 46.6 20.0 46.6 20.0 46.6 20.0 46.6 20.0 46.6 20.0 46.6 20.0 46.6												
0.49												
0.50	0.48	698.48	12.75	12.65	28.83	28.74	12.75	12.65			14.0	60
0.51	0.49	698.49	12.75	12.65	28.83	28.74	12.75	12.65	14.5	32.8	14.5	62
0.52 698.52 12.75 12.65 28.83 28.73 12.75 12.64 16.2 36.9 16.2 69												
0.53 698.51 12.75 12.64 28.83 28.73 12.75 12.64 16.2 36.9 16.2 69 0.54 698.55 12.75 12.64 28.83 28.72 12.75 12.64 17.6 38.0 16.7 71 0.55 698.55 12.75 12.64 28.83 28.72 12.75 12.64 17.6 40.1 17.6 75 0.57 698.57 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.58 698.58 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.59 698.58 12.75 12.63 28.83 28.72 12.75 12.63 19.5 44.4 19.5 84 0.60 698.60 12.75 12.63 28.83 28.71 12.75 12.63 19.5 44.4 19.5 84 0.61 698.61 12.75 12.63 28.83 28.71 12.75 12.63 20.5 46.7 20.5 86 0.62 698.62 12.75 12.63 28.83 28.71 12.75 12.63 20.5 46.7 20.5 86 0.63 698.63 12.75 12.62 28.83 28.71 12.75 12.62 21.65 20.5 46.7 20.5 0.64 698.64 12.75 12.62 28.83 28.71 12.75 12.62 21.5 49.9 21.5 99.0 0.64 698.66 12.75 12.62 28.83 28.70 12.75 12.62 22.5 51.2 22.5 96 0.67 698.67 12.75 12.62 28.83 28.70 12.75 12.62 22.0 50.1 22.0 94 0.66 698.66 12.75 12.61 28.83 28.70 12.75 12.62 22.0 50.1 22.0 98 0.69 698.69 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.69 698.69 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.69 698.69 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.70 698.70 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.71 698.71 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.71 698.72 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.71 698.73 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.73 698.73 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.73												
0.55												
0.55 698.56 12.75 12.64 28.83 28.72 12.75 12.64 17.2 39.0 17.2 75 0.56 698.56 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77 0.57 698.57 12.75 12.63 28.83 28.72 12.75 12.63 18.6 42.2 18.6 79 0.59 698.59 12.75 12.63 28.83 28.71 12.75 12.63 19.1 43.3 19.1 18.1 60.61 698.60 12.75 12.63 28.83 28.71 12.75 12.63 19.9 44.4 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44 19.5 44<												
0.56 698.5 698.5 612.75 12.64 28.83 28.72 12.75 12.64 17.6 40.1 17.6 79												
0.57 698.57 12.75 12.64 28.83 28.72 12.75 12.64 18.1 41.2 18.1 77												
0.59 698.59 12.75 12.63 28.83 28.72 12.75 12.63 19.1 43.3 19.1 81		698.57	12.75	12.64	28.83	28.72	12.75			41.2	18.1	77
0.60	0.58	698.58	12.75	12.63	28.83	28.72	12.75	12.63	18.6	42.2	18.6	79
0.61												
0.62 698.62 12.75 12.63 28.83 28.71 12.75 12.66 20.5 46.7 20.5 88												
0.63 698.64 12.75 12.62 28.83 28.71 12.75 12.62 21.0 47.8 21.0 90 0.64 698.65 12.75 12.62 28.83 28.70 12.75 12.62 22.0 50.1 22.0 94 0.66 698.66 12.75 12.62 28.83 28.70 12.75 12.62 22.30 52.4 23.0 98 0.66 698.66 12.75 12.62 28.83 28.70 12.75 12.62 23.0 52.4 23.0 98 0.68 698.68 12.75 12.61 28.83 28.70 12.75 12.61 23.6 93.6 10.75 12.61 24.1 54.8 24.1 103 69.8 10.8 12.75 12.61 24.1 54.8 24.1 103 24.1 103 24.1 103 24.1 103 24.1 103 24.1 103 24.1 103 24.1 103 24.1 24.2<												
0.64 698.64 12.75 12.62 28.83 28.70 12.75 12.62 22.83 28.70 12.75 12.62 22.0 94 0.66 698.66 12.75 12.62 28.83 28.70 12.75 12.62 22.0 50.1 22.0 94 0.67 698.67 12.75 12.62 28.83 28.70 12.75 12.62 23.0 52.4 23.0 98 0.68 698.68 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 101 0.69 698.69 12.75 12.61 28.83 28.69 12.75 12.61 24.6 105 0.71 698.71 12.75 12.61 28.83 28.69 12.75 12.61 24.6 56.0 24.6 105 0.72 698.71 12.75 12.60 28.83 28.69 12.75 12.61 25.6 58.4 25.6 110												
0.65 698.65 12.75 12.62 28.83 28.70 12.75 12.62 22.0 50.1 22.0 94 0.66 698.66 12.75 12.62 28.83 28.70 12.75 12.62 22.5 51.2 22.5 96 0.68 698.68 12.75 12.61 28.83 28.70 12.75 12.61 23.6 53.6 23.6 13.6 0.69 698.69 12.75 12.61 28.83 28.69 12.75 12.61 24.8 24.1 103 0.70 698.70 12.75 12.61 28.83 28.69 12.75 12.61 24.6 56.0 24.6 105 0.71 698.71 12.75 12.61 28.83 28.69 12.75 12.61 25.6 58.4 25.1 100 0.73 698.73 12.75 12.60 28.83 28.69 12.75 12.60 26.2 59.6 26.2 112 0.74												
0.66												
0.68												
0.69 698.69 12.75 12.61 28.83 28.70 12.75 12.61 28.83 28.69 12.75 12.61 28.83 28.69 12.75 12.61 25.83 28.69 12.75 12.61 25.1 107 0.72 698.72 12.75 12.61 28.83 28.69 12.75 12.61 25.6 58.4 25.6 110 0.73 698.73 12.75 12.60 28.83 28.69 12.75 12.60 26.2 59.6 26.2 112 0.74 698.74 12.75 12.60 28.83 28.69 12.75 12.60 26.2 59.6 26.2 112 0.75 698.75 12.75 12.60 28.83 28.68 12.75 12.60 27.3 62.0 27.3 117 0.76 698.76 12.75 12.60 28.83 28.68 12.75 12.60 28.3 28.68 12.75 12.60 28.3 28.68 12.75 <t< td=""><td>0.67</td><td>698.67</td><td>12.75</td><td>12.62</td><td>28.83</td><td>28.70</td><td>12.75</td><td>12.62</td><td>23.0</td><td>52.4</td><td>23.0</td><td>98</td></t<>	0.67	698.67	12.75	12.62	28.83	28.70	12.75	12.62	23.0	52.4	23.0	98
0.70	0.68	698.68	12.75	12.61	28.83	28.70	12.75	12.61	23.6	53.6	23.6	101
0.71 698.71 12.75 12.61 28.83 28.69 12.75 12.61 25.1 57.2 25.1 107												
0.72 698.72 12.75 12.61 28.83 28.69 12.75 12.61 25.6 58.4 25.6 110 0.73 698.73 12.75 12.60 28.83 28.69 12.75 12.60 26.2 59.6 26.2 112 0.74 698.75 12.75 12.60 28.83 28.68 12.75 12.60 27.3 62.0 27.3 117 0.75 698.75 12.75 12.60 28.83 28.68 12.75 12.60 27.3 62.0 27.3 117 0.77 698.76 12.75 12.60 28.83 28.68 12.75 12.60 28.3 12.1 12.60 28.3 28.68 12.75 12.60 28.3 28.67 12.75 12.60 28.3 28.67 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.67 12.75												
0.73 698.73 12.75 12.60 28.83 28.69 12.75 12.60 26.2 59.6 26.2 112 0.74 698.74 12.75 12.60 28.83 28.69 12.75 12.60 26.7 114 0.75 698.76 12.75 12.60 28.83 28.68 12.75 12.60 27.3 62.0 27.3 117 0.76 698.76 12.75 12.60 28.83 28.68 12.75 12.60 28.3 28.68 12.75 12.60 28.3 28.68 12.75 12.60 28.3 28.68 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.67 12.75 12.59 28.83 28.67 12.75 12.59 30.0 68.3 30.0 12.8 30.0 12.8 30.0 12.8 30.0												
0.74 698.74 12.75 12.60 28.83 28.69 12.75 12.60 26.7 60.8 26.7 114												
0.75 698.75 12.75 12.60 28.83 28.68 12.75 12.60 27.3 62.0 27.3 117 0.76 698.76 12.75 12.60 28.83 28.68 12.75 12.60 28.33 24.81 119 0.77 698.77 12.75 12.59 28.83 28.68 12.75 12.59 28.3 28.68 12.75 12.59 28.83 28.67 12.59 28.9 65.8 28.9 124 0.79 698.79 12.75 12.59 28.83 28.67 12.75 12.59 28.83 28.67 12.75 12.59 28.83 28.67 12.75 12.59 28.83 28.67 12.75 12.59 30.0 68.3 30.0 128 0.81 698.81 12.75 12.59 28.83 28.67 12.75 12.59 30.6 69.6 30.6 131 0.82 698.82 12.75 12.58 28.83 28.67 12.75												
0.76 698.76 12.75 12.60 28.83 28.68 12.75 12.60 27.8 63.3 27.8 119 0.77 698.77 12.75 12.60 28.83 28.68 12.75 12.60 28.3 64.5 28.3 121 0.78 698.78 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.68 12.75 12.59 28.83 28.67 12.59 29.4 67.0 29.4 126 0.80 698.80 12.75 12.59 28.83 28.67 12.75 12.59 30.0 68.3 30.0 128 0.81 698.81 12.75 12.59 28.83 28.67 12.75 12.59 30.6 696.83 30.0 30.6 31.1 133 0.83 698.83 12.75 12.58 28.83 28.67 12.75 12.58 32.3 73.5 32.3 13.7 0.84 698.84 12.75 12.58<												
0.78 698.78 12.75 12.59 28.83 28.68 12.75 12.59 28.9 65.8 28.9 124 0.79 698.79 12.75 12.59 28.83 28.68 12.75 12.59 29.4 67.0 29.4 126 0.81 698.80 12.75 12.59 28.83 28.67 12.75 12.59 30.0 68.3 30.0 128 0.81 698.81 12.75 12.59 28.83 28.67 12.75 12.59 30.6 69.6 30.6 131 0.82 698.82 12.75 12.59 28.83 28.67 12.75 12.58 31.7 70.9 31.1 133 0.83 698.83 12.75 12.58 28.83 28.67 12.75 12.58 31.7 72.2 31.7 133 0.85 698.85 12.75 12.58 28.83 28.66 12.75 12.58 32.8 140 0.86 698.86												
0.79 698.79 12.75 12.59 28.83 28.68 12.75 12.59 29.4 67.0 29.4 126 0.80 698.80 12.75 12.59 28.83 28.67 12.75 12.59 30.0 68.3 30.0 128 0.81 698.81 12.75 12.59 28.83 28.67 12.75 12.59 30.6 69.6 30.6 131 0.82 698.82 12.75 12.58 28.83 28.67 12.75 12.58 31.1 70.9 31.1 70.9 31.1 73.5 31.7 72.2 31.7 136 0.84 698.84 12.75 12.58 28.83 28.67 12.75 12.58 32.8 74.8 32.8 140 0.86 698.85 12.75 12.58 28.83 28.66 12.75 12.58 33.4 76.1 33.4 74.1 34.0 145 0.87 698.87 12.75 12.58 28.83	0.77	698.77	12.75	12.60	28.83	28.68	12.75	12.60	28.3	64.5	28.3	121
0.80 698.80 12.75 12.59 28.83 28.67 12.75 12.59 30.0 68.3 30.0 128 0.81 698.81 12.75 12.59 28.83 28.67 12.75 12.59 30.6 69.6 30.6 131 0.82 698.82 12.75 12.59 28.83 28.67 12.75 12.58 31.1 70.9 31.1 133 0.84 698.84 12.75 12.58 28.83 28.67 12.75 12.58 32.3 73.5 32.3 138 0.85 698.85 12.75 12.58 28.83 28.66 12.75 12.58 32.3 73.5 32.3 138 0.86 698.86 12.75 12.58 28.83 28.66 12.75 12.58 33.4 76.1 33.4 143 0.87 698.87 12.75 12.58 28.83 28.66 12.75 12.58 33.4 76.1 33.4 143												
0.81 698.81 12.75 12.59 28.83 28.67 12.75 12.59 30.6 69.6 30.6 131 0.82 698.82 12.75 12.59 28.83 28.67 12.75 12.59 31.1 70.9 31.1 133 0.83 698.83 12.75 12.58 28.83 28.67 12.75 12.58 31.7 72.2 31.7 136 0.84 698.84 12.75 12.58 28.83 28.66 12.75 12.58 32.8 74.8 32.8 140 0.86 698.86 12.75 12.58 28.83 28.66 12.75 12.58 32.8 74.8 32.8 140 0.87 698.87 12.75 12.58 28.83 28.66 12.75 12.58 34.0 77.4 34.0 145 0.88 698.88 12.75 12.57 28.83 28.66 12.75 12.57 35.2 80.1 35.2 150												
0.82 698.82 12.75 12.59 28.83 28.67 12.75 12.59 31.1 70.9 31.1 133 0.83 698.83 12.75 12.58 28.83 28.67 12.75 12.58 31.7 72.2 31.7 136 0.84 698.84 12.75 12.58 28.83 28.67 12.75 12.58 32.3 73.5 32.3 138 0.85 698.85 12.75 12.58 28.83 28.66 12.75 12.58 33.4 76.1 33.4 143 0.87 698.87 12.75 12.58 28.83 28.66 12.75 12.58 34.0 77.4 34.0 145 0.88 698.88 12.75 12.57 28.83 28.66 12.75 12.57 34.6 78.8 34.6 148 0.89 698.89 12.75 12.57 28.83 28.65 12.75 12.57 35.2 80.1 35.2 150												
0.83 698.83 12.75 12.58 28.83 28.67 12.75 12.58 31.7 72.2 31.7 136 0.84 698.84 12.75 12.58 28.83 28.67 12.75 12.58 32.3 73.5 32.3 138 0.85 698.85 12.75 12.58 28.83 28.66 12.75 12.58 32.8 74.8 32.8 140 0.86 698.86 12.75 12.58 28.83 28.66 12.75 12.58 33.4 76.1 33.4 143 0.87 698.87 12.75 12.58 28.83 28.66 12.75 12.58 34.0 77.4 34.0 145 0.88 698.88 12.75 12.57 28.83 28.66 12.75 12.57 34.6 78.8 34.6 148 0.89 698.89 12.75 12.57 28.83 28.65 12.75 12.57 35.2 80.1 35.2 150												
0.84 698.84 12.75 12.58 28.83 28.67 12.75 12.58 32.3 73.5 32.3 138 0.85 698.85 12.75 12.58 28.83 28.66 12.75 12.58 32.8 74.8 32.8 140 0.86 698.86 12.75 12.58 28.83 28.66 12.75 12.58 33.4 76.1 33.4 143 0.87 698.87 12.75 12.58 28.83 28.66 12.75 12.58 34.0 77.4 34.0 145 0.88 698.88 12.75 12.57 28.83 28.66 12.75 12.57 34.6 78.8 34.6 148 0.89 698.89 12.75 12.57 28.83 28.66 12.75 12.57 35.2 80.1 35.7 153 0.90 698.90 12.75 12.57 28.83 28.65 12.75 12.57 36.3 82.8 36.3 155												
0.85 698.85 12.75 12.58 28.83 28.66 12.75 12.58 32.8 74.8 32.8 140 0.86 698.86 12.75 12.58 28.83 28.66 12.75 12.58 33.4 76.1 33.4 143 0.87 698.87 12.75 12.58 28.83 28.66 12.75 12.58 34.0 77.4 34.0 145 0.88 698.88 12.75 12.57 28.83 28.66 12.75 12.57 34.6 78.8 34.6 148 0.89 698.89 12.75 12.57 28.83 28.66 12.75 12.57 35.2 80.1 35.2 150 0.90 698.90 12.75 12.57 28.83 28.65 12.75 35.7 81.5 35.7 153 0.91 698.91 12.75 12.57 28.83 28.65 12.75 12.57 36.3 82.8 36.3 155 0.92												
0.86 698.86 12.75 12.58 28.83 28.66 12.75 12.58 33.4 76.1 33.4 143 0.87 698.87 12.75 12.58 28.83 28.66 12.75 12.58 34.0 77.4 34.0 145 0.88 698.88 12.75 12.57 28.83 28.66 12.75 12.57 34.6 78.8 34.6 148 0.89 698.89 12.75 12.57 28.83 28.66 12.75 12.57 35.2 80.1 35.2 150 0.90 698.90 12.75 12.57 28.83 28.65 12.75 12.57 35.7 81.5 35.7 153 0.91 698.91 12.75 12.57 28.83 28.65 12.75 12.57 36.3 85.7 153 0.91 698.92 12.75 12.57 28.83 28.65 12.75 12.57 36.9 84.2 36.9 158 0.92												
0.88 698.88 12.75 12.57 28.83 28.66 12.75 12.57 34.6 78.8 34.6 148 0.89 698.89 12.75 12.57 28.83 28.66 12.75 12.57 35.2 80.1 35.2 150 0.90 698.90 12.75 12.57 28.83 28.65 12.75 12.57 35.7 81.5 35.7 153 0.91 698.91 12.75 12.57 28.83 28.65 12.75 12.57 36.3 82.8 36.3 155 0.92 698.92 12.75 12.57 28.83 28.65 12.75 12.57 36.9 84.2 36.9 158 0.93 698.93 12.75 12.56 28.83 28.65 12.75 12.56 37.5 85.6 37.5 161 0.94 698.94 12.75 12.56 28.83 28.65 12.75 12.56 38.1 86.9 38.1 163								12.58				
0.89 698.89 12.75 12.57 28.83 28.66 12.75 12.57 35.2 80.1 35.2 150 0.90 698.90 12.75 12.57 28.83 28.65 12.75 12.57 35.7 81.5 35.7 153 0.91 698.91 12.75 12.57 28.83 28.65 12.75 12.57 36.3 82.8 36.3 155 0.92 698.92 12.75 12.56 28.83 28.65 12.75 12.57 36.9 84.2 36.9 158 0.93 698.93 12.75 12.56 28.83 28.65 12.75 12.56 37.5 85.6 37.5 161 0.94 698.94 12.75 12.56 28.83 28.65 12.75 12.56 38.1 86.9 38.1 163 0.95 698.95 12.75 12.56 28.83 28.64 12.75 12.56 38.7 88.3 38.7 166												
0.90 698.90 12.75 12.57 28.83 28.65 12.75 12.57 35.7 81.5 35.7 153 0.91 698.91 12.75 12.57 28.83 28.65 12.75 12.57 36.3 82.8 36.3 155 0.92 698.92 12.75 12.57 28.83 28.65 12.75 12.57 36.9 84.2 36.9 158 0.93 698.93 12.75 12.56 28.83 28.65 12.75 12.56 37.5 85.6 37.5 161 0.94 698.94 12.75 12.56 28.83 28.65 12.75 12.56 38.1 86.9 38.1 163 0.95 698.95 12.75 12.56 28.83 28.64 12.75 12.56 38.7 88.3 38.7 166 0.96 698.96 12.75 12.56 28.83 28.64 12.75 12.56 39.3 89.7 39.3 168												
0.91 698.91 12.75 12.57 28.83 28.65 12.75 12.57 36.3 82.8 36.3 155 0.92 698.92 12.75 12.57 28.83 28.65 12.75 12.57 36.9 84.2 36.9 158 0.93 698.93 12.75 12.56 28.83 28.65 12.75 12.56 37.5 85.6 37.5 161 0.94 698.94 12.75 12.56 28.83 28.65 12.75 12.56 38.1 86.9 38.1 163 0.95 698.95 12.75 12.56 28.83 28.64 12.75 12.56 38.7 88.3 38.7 166 0.96 698.96 12.75 12.56 28.83 28.64 12.75 12.56 39.3 89.7 39.3 168 0.97 698.97 12.75 12.56 28.83 28.64 12.75 12.55 40.6 92.5 40.6 174												
0.92 698.92 12.75 12.57 28.83 28.65 12.75 12.57 36.9 84.2 36.9 158 0.93 698.93 12.75 12.56 28.83 28.65 12.75 12.56 37.5 85.6 37.5 161 0.94 698.94 12.75 12.56 28.83 28.65 12.75 12.56 38.1 86.9 38.1 163 0.95 698.95 12.75 12.56 28.83 28.64 12.75 12.56 38.7 88.3 38.7 166 0.96 698.96 12.75 12.56 28.83 28.64 12.75 12.56 39.3 89.7 39.3 168 0.97 698.97 12.75 12.56 28.83 28.64 12.75 12.56 39.9 91.1 39.9 171 0.98 698.98 12.75 12.55 28.83 28.64 12.75 12.55 40.6 92.5 40.6 174												
0.93 698.93 12.75 12.56 28.83 28.65 12.75 12.56 37.5 85.6 37.5 161 0.94 698.94 12.75 12.56 28.83 28.65 12.75 12.56 38.1 86.9 38.1 163 0.95 698.95 12.75 12.56 28.83 28.64 12.75 12.56 38.7 88.3 38.7 166 0.96 698.96 12.75 12.56 28.83 28.64 12.75 12.56 39.3 89.7 39.3 168 0.97 698.97 12.75 12.56 28.83 28.64 12.75 12.56 39.9 91.1 39.9 171 0.98 698.98 12.75 12.55 28.83 28.64 12.75 12.55 40.6 92.5 40.6 174 0.99 698.99 12.75 12.55 28.83 28.64 12.75 12.55 41.2 93.9 41.2 176												
0.94 698.94 12.75 12.56 28.83 28.65 12.75 12.56 38.1 86.9 38.1 163 0.95 698.95 12.75 12.56 28.83 28.64 12.75 12.56 38.7 88.3 38.7 166 0.96 698.96 12.75 12.56 28.83 28.64 12.75 12.56 39.3 89.7 39.3 168 0.97 698.97 12.75 12.56 28.83 28.64 12.75 12.56 39.9 91.1 39.9 171 0.98 698.98 12.75 12.55 28.83 28.64 12.75 12.55 40.6 92.5 40.6 174 0.99 698.99 12.75 12.55 28.83 28.64 12.75 12.55 41.2 93.9 41.2 176 1.00 699.00 12.75 12.55 28.83 28.63 12.75 12.55 41.8 95.3 41.8 179												
0.95 698.95 12.75 12.56 28.83 28.64 12.75 12.56 38.7 88.3 38.7 166 0.96 698.96 12.75 12.56 28.83 28.64 12.75 12.56 39.3 89.7 39.3 168 0.97 698.97 12.75 12.56 28.83 28.64 12.75 12.56 39.9 91.1 39.9 171 0.98 698.98 12.75 12.55 28.83 28.64 12.75 12.55 40.6 92.5 40.6 174 0.99 698.99 12.75 12.55 28.83 28.64 12.75 12.55 41.2 93.9 41.2 176 1.00 699.00 12.75 12.55 28.83 28.63 12.75 12.55 41.8 95.3 41.8 179 1.01 699.01 12.75 12.55 28.83 28.63 12.75 12.55 42.4 96.8 42.4 182												
0.97 698.97 12.75 12.56 28.83 28.64 12.75 12.56 39.9 91.1 39.9 171 0.98 698.98 12.75 12.55 28.83 28.64 12.75 12.55 40.6 92.5 40.6 174 0.99 698.99 12.75 12.55 28.83 28.64 12.75 12.55 41.2 93.9 41.2 176 1.00 699.00 12.75 12.55 28.83 28.63 12.75 12.55 41.8 95.3 41.8 179 1.01 699.01 12.75 12.55 28.83 28.63 12.75 12.55 42.4 96.8 42.4 182 1.02 699.02 12.75 12.55 28.83 28.63 12.75 12.55 43.0 98.2 43.0 184 1.03 699.03 12.75 12.54 28.83 28.63 12.75 12.54 43.7 99.7 43.7 187												
0.98 698.98 12.75 12.55 28.83 28.64 12.75 12.55 40.6 92.5 40.6 174 0.99 698.99 12.75 12.55 28.83 28.64 12.75 12.55 41.2 93.9 41.2 176 1.00 699.00 12.75 12.55 28.83 28.63 12.75 12.55 41.8 95.3 41.8 179 1.01 699.01 12.75 12.55 28.83 28.63 12.75 12.55 42.4 96.8 42.4 182 1.02 699.02 12.75 12.55 28.83 28.63 12.75 12.55 43.0 98.2 43.0 184 1.03 699.03 12.75 12.54 28.83 28.63 12.75 12.54 43.7 99.7 43.7 187 1.04 699.04 12.75 12.54 28.83 28.63 12.75 12.54 44.3 101.1 44.3 190	0.96	698.96	12.75	12.56	28.83	28.64	12.75	12.56	39.3	89.7	39.3	168
0.99 698.99 12.75 12.55 28.83 28.64 12.75 12.55 41.2 93.9 41.2 176 1.00 699.00 12.75 12.55 28.83 28.63 12.75 12.55 41.8 95.3 41.8 179 1.01 699.01 12.75 12.55 28.83 28.63 12.75 12.55 42.4 96.8 42.4 182 1.02 699.02 12.75 12.55 28.83 28.63 12.75 12.55 43.0 98.2 43.0 184 1.03 699.03 12.75 12.54 28.83 28.63 12.75 12.54 43.7 99.7 43.7 187 1.04 699.04 12.75 12.54 28.83 28.63 12.75 12.54 44.3 101.1 44.3 190 1.05 699.05 12.75 12.54 28.83 28.62 12.75 12.54 44.9 102.6 44.9 192												
1.00 699.00 12.75 12.55 28.83 28.63 12.75 12.55 41.8 95.3 41.8 179 1.01 699.01 12.75 12.55 28.83 28.63 12.75 12.55 42.4 96.8 42.4 182 1.02 699.02 12.75 12.55 28.83 28.63 12.75 12.55 43.0 98.2 43.0 184 1.03 699.03 12.75 12.54 28.83 28.63 12.75 12.54 43.7 99.7 43.7 187 1.04 699.04 12.75 12.54 28.83 28.63 12.75 12.54 44.3 101.1 44.3 190 1.05 699.05 12.75 12.54 28.83 28.62 12.75 12.54 44.9 102.6 44.9 192												
1.01 699.01 12.75 12.55 28.83 28.63 12.75 12.55 42.4 96.8 42.4 182 1.02 699.02 12.75 12.55 28.83 28.63 12.75 12.55 43.0 98.2 43.0 184 1.03 699.03 12.75 12.54 28.83 28.63 12.75 12.54 43.7 99.7 43.7 187 1.04 699.04 12.75 12.54 28.83 28.63 12.75 12.54 44.3 101.1 44.3 190 1.05 699.05 12.75 12.54 28.83 28.62 12.75 12.54 44.9 102.6 44.9 192												
1.02 699.02 12.75 12.55 28.83 28.63 12.75 12.55 43.0 98.2 43.0 184 1.03 699.03 12.75 12.54 28.83 28.63 12.75 12.54 43.7 99.7 43.7 187 1.04 699.04 12.75 12.54 28.83 28.63 12.75 12.54 44.3 101.1 44.3 190 1.05 699.05 12.75 12.54 28.83 28.62 12.75 12.54 44.9 102.6 44.9 192												
1.03 699.03 12.75 12.54 28.83 28.63 12.75 12.54 43.7 99.7 43.7 187 1.04 699.04 12.75 12.54 28.83 28.63 12.75 12.54 44.3 101.1 44.3 190 1.05 699.05 12.75 12.54 28.83 28.62 12.75 12.54 44.9 102.6 44.9 192												
1.04 699.04 12.75 12.54 28.83 28.63 12.75 12.54 44.3 101.1 44.3 190 1.05 699.05 12.75 12.54 28.83 28.62 12.75 12.54 44.9 102.6 44.9 192												
1.05 699.05 12.75 12.54 28.83 28.62 12.75 12.54 44.9 102.6 44.9 192												
1.06 699.06 12.75 12.54 28.83 28.62 12.75 12.54 45.6 104.0 45.6 195												
	1.06	699.06	12.75	12.54	28.83	28.62	12.75	12.54	45.6	104.0	45.6	195

Table 8-1. Watts Bar Ash Pond Primary Spillway Stage-Discharge Rating Table

		South	Weir	Middle	e Weir	North	Weir	South	Middle	North	Total
		30411	W C II	Wildan	e wen	140111	Well	Weir	Weir	Weir	Weir
Н	Upstream	Actual	Effect.	Actual	Effect.	Actual	Effect.	Q	Q	Q	Q
(ft)		Length (ft)	Length (ft)	Length (ft)	Length (ft)			(cfs)	(cfs)	(cfs)	(cfs)
1.07	699.07	12.75	12.54	28.83	28.62	12.75	12.54	46.2	105.5	46.2	198
1.08	699.08	12.75	12.53	28.83	28.62	12.75	12.53	46.8	107.0	46.8	201
1.09	699.09	12.75	12.53	28.83	28.62	12.75	12.53	47.5	108.4	47.5	203
1.10	699.10	12.75	12.53	28.83	28.61	12.75	12.53	48.1	109.9	48.1	206
1.11	699.11	12.75	12.53	28.83	28.61	12.75	12.53	48.8	111.4	48.8	209
1.12	699.12	12.75	12.53	28.83	28.61	12.75	12.53	49.4	112.9	49.4	212
1.13	699.13	12.75	12.52	28.83	28.61	12.75	12.52	50.1	114.4	50.1	215
1.14	699.14	12.75	12.52	28.83	28.61	12.75	12.52	50.8	115.9	50.8	217
1.15	699.15	12.75	12.52	28.83	28.60	12.75	12.52	51.4	117.5	51.4	220
1.16	699.16	12.75	12.52	28.83	28.60	12.75	12.52	52.1	119.0	52.1	223
1.17	699.17	12.75	12.52	28.83	28.60	12.75	12.52	52.7	120.5	52.7	226
1.18	699.18	12.75	12.51	28.83	28.60	12.75	12.51	53.4	122.1	53.4	229
1.19	699.19	12.75	12.51	28.83	28.60	12.75	12.51	54.1	123.6	54.1	232
1.20 1.21	699.20 699.21	12.75 12.75	12.51 12.51	28.83 28.83	28.59 28.59	12.75 12.75	12.51 12.51	54.8 55.4	125.2 126.7	54.8 55.4	235 238
1.21	699.22	12.75	12.51	28.83	28.59	12.75	12.51	56.1	128.3	56.1	236 241
1.23	699.23	12.75	12.51	28.83	28.59	12.75	12.50	56.8	129.9	56.8	241
1.23	699.24	12.75	12.50	28.83	28.59	12.75	12.50	57.5	131.4	57.5	243 246
1.25	699.25	12.75	12.50	28.83	28.58	12.75	12.50	58.2	133.0	58.2	249
1.26	699.26	12.75	12.50	28.83	28.58	12.75	12.50	58.9	134.6	58.9	252
1.27	699.27	12.75	12.50	28.83	28.58	12.75	12.50	59.6	136.2	59.6	255
1.28	699.28	12.75	12.49	28.83	28.58	12.75	12.49	60.3	137.8	60.3	258
1.29	699.29	12.75	12.49	28.83	28.58	12.75	12.49	60.9	139.4	60.9	261
1.30	699.30	12.75	12.49	28.83	28.57	12.75	12.49	61.6	141.0	61.6	264
1.31	699.31	12.75	12.49	28.83	28.57	12.75	12.49	62.4	142.7	62.4	267
1.32	699.32	12.75	12.49	28.83	28.57	12.75	12.49	63.1	144.3	63.1	270
1.33	699.33	12.75	12.48	28.83	28.57	12.75	12.48	63.8	145.9	63.8	273
1.34	699.34	12.75	12.48	28.83	28.57	12.75	12.48	64.5	147.6	64.5	276
1.35	699.35	12.75	12.48	28.83	28.56	12.75	12.48	65.2	149.2	65.2	280
1.36	699.36	12.75	12.48	28.83	28.56	12.75	12.48	65.9	150.8	65.9	283
1.37	699.37	12.75	12.48	28.83	28.56	12.75	12.48	66.6	152.5	66.6	286
1.38	699.38	12.75	12.47	28.83	28.56	12.75	12.47	67.3	154.2	67.3	289
1.39	699.39	12.75	12.47	28.83	28.56	12.75	12.47	68.1	155.8	68.1	292
1.40 1.41	699.40 699.41	12.75 12.75	12.47 12.47	28.83 28.83	28.55 28.55	12.75 12.75	12.47 12.47	68.8 69.5	157.5 159.2	68.8 69.5	295 298
1.41	699.41	12.75	12.47	28.83	28.55	12.75	12.47	70.2	160.9	70.2	301
1.42	699.43	12.75	12.47	28.83	28.55	12.75	12.46	70.2	162.6	70.2	305
1.43	699.44	12.75	12.46	28.83	28.55	12.75	12.46	71.7	164.3	71.7	308
1.45	699.45	12.75	12.46	28.83	28.54	12.75	12.46	72.4	166.0	72.4	311
1.46	699.46	12.75	12.46	28.83	28.54	12.75	12.46	73.2	167.7	73.2	314
1.47	699.47	12.75	12.46	28.83	28.54	12.75	12.46	73.9	169.4	73.9	317
1.48	699.48	12.75	12.45	28.83	28.54	12.75	12.45	74.7	171.1	74.7	320
1.49	699.49	12.75	12.45	28.83	28.54	12.75	12.45	75.4	172.8	75.4	324
1.50	699.50	12.75	12.45	28.83	28.53	12.75	12.45	76.2	174.6	76.2	327
1.51	699.51	12.75	12.45	28.83	28.53	12.75	12.45	76.9	176.3	76.9	330
1.52	699.52	12.75	12.45	28.83	28.53	12.75	12.45	77.7	178.0	77.7	333
1.53	699.53	12.75	12.44	28.83	28.53	12.75	12.44	78.4	179.8	78.4	337
1.54	699.54	12.75	12.44	28.83	28.53	12.75	12.44	79.2	181.5	79.2	340
1.55	699.55	12.75	12.44	28.83	28.52	12.75	12.44	79.9	183.3	79.9	343
1.56	699.56	12.75	12.44	28.83	28.52	12.75	12.44	80.7	185.1	80.7	346
1.57	699.57	12.75	12.44	28.83	28.52	12.75	12.44	81.5	186.8	81.5	350
1.58	699.58	12.75	12.43	28.83	28.52	12.75	12.43	82.2	188.6	82.2	353
1.59	699.59	12.75	12.43	28.83	28.52	12.75	12.43	83.0	190.4	83.0	356
1.60	699.60	12.75	12.43	28.83	28.51	12.75	12.43	83.8	192.2	83.8	360
1.61	699.61	12.75	12.43	28.83	28.51	12.75	12.43	84.5	194.0	84.5	363
1.62 1.63	699.62 699.63	12.75 12.75	12.43 12.42	28.83 28.83	28.51 28.51	12.75 12.75	12.43 12.42	85.3 86.1	195.8 197.6	85.3 86.1	366 370
1.63	699.63	12.75 12.75	12.42 12.42	28.83 28.83	28.51	12.75 12.75	12.42 12.42	86.1 86.9	197.6 199.4	86.1 86.9	370 373
1.65	699.65	12.75 12.75	12.42	28.83	28.51	12.75	12.42	86.9 87.7	201.2	86.9 87.7	373 376
1.66	699.66	12.75	12.42	28.83	28.50	12.75	12.42	88.4	201.2	87.7 88.4	380
1.67	699.67	12.75	12.42	28.83	28.50	12.75	12.42	89.2	203.0	89.2	383
1.68	699.68	12.75	12.42	28.83	28.50	12.75	12.42	90.0	206.6	90.0	387
1.69	699.69	12.75	12.41	28.83	28.50	12.75	12.41	90.8	208.5	90.8	390
1.70	699.70	12.75	12.41	28.83	28.49	12.75	12.41	91.6	210.3	91.6	394
1.71	699.71	12.75	12.41	28.83	28.49	12.75	12.41	92.4	212.2	92.4	397
-		-		-	•		ļ				

Table 8-1. Watts Bar Ash Pond Primary Spillway Stage-Discharge Rating Table

		South	Weir	Middl	e Weir	North	Weir	South	Middle	North	Total
								Weir	Weir	Weir	Weir
Н	Upstream	Actual	Effect.	Actual	Effect.	Actual	Effect.	Q	Q	Q	Q
(ft)	WSE (ft)	Length (ft)	(cfs)	(cfs)	(cfs)	(cfs)					
1.72	699.72	12.75	12.41	28.83	28.49	12.75	12.41	93.2	214.0	93.2	400
1.73	699.73	12.75	12.40	28.83	28.49	12.75	12.40	94.0	215.9	94.0	404
1.74	699.74	12.75	12.40	28.83	28.49	12.75	12.40	94.8	217.7	94.8	407
1.75	699.75	12.75	12.40	28.83	28.48	12.75	12.40	95.6	219.6	95.6	411
1.76	699.76	12.75	12.40	28.83	28.48	12.75	12.40	96.4	221.4	96.4	414
1.77	699.77	12.75	12.40	28.83	28.48	12.75	12.40	97.2	223.3	97.2	418
1.78	699.78	12.75	12.39	28.83	28.48	12.75	12.39	98.0	225.2	98.0	421
1.79	699.79	12.75	12.39	28.83	28.48	12.75	12.39	98.8	227.1	98.8	425
1.80	699.80	12.75	12.39	28.83	28.47	12.75	12.39	99.6	229.0	99.6	428
1.81	699.81	12.75	12.39	28.83	28.47	12.75	12.39	100.5	230.9	100.5	432
1.82	699.82	12.75	12.39	28.83	28.47	12.75	12.39	101.3	232.8	101.3	435
1.83	699.83	12.75	12.38	28.83	28.47	12.75	12.38	102.1	234.7	102.1	439
1.84	699.84	12.75	12.38	28.83	28.47	12.75	12.38	102.9	236.6	102.9	442
1.85	699.85	12.75	12.38	28.83	28.46	12.75	12.38	103.7	238.5	103.7	446
1.86	699.86	12.75	12.38	28.83	28.46	12.75	12.38	104.6	240.4	104.6	450
1.87	699.87	12.75	12.38	28.83	28.46	12.75	12.38	105.4	242.3	105.4	453
1.88	699.88	12.75	12.37	28.83	28.46	12.75	12.37	106.2	244.3	106.2	457
1.89	699.89	12.75	12.37	28.83	28.46	12.75	12.37	107.0	246.2	107.0	460
1.90	699.90	12.75	12.37	28.83	28.45	12.75	12.37	107.9	248.1	107.9	464
1.91	699.91	12.75	12.37	28.83	28.45	12.75	12.37	108.7	250.1	108.7	468
1.92	699.92	12.75	12.37	28.83	28.45	12.75	12.37	109.6	252.0	109.6	471
1.93	699.93	12.75	12.36	28.83	28.45	12.75	12.36	110.4	254.0	110.4	475
1.94	699.94	12.75	12.36	28.83	28.45	12.75	12.36	111.2	256.0	111.2	478
1.95	699.95	12.75	12.36	28.83	28.44	12.75	12.36	112.1	257.9	112.1	482
1.96	699.96	12.75	12.36	28.83	28.44	12.75	12.36	112.9	259.9	112.9	486
1.97	699.97	12.75	12.36	28.83	28.44	12.75	12.36	113.8	261.9	113.8	489
1.98	699.98	12.75	12.35	28.83	28.44	12.75	12.35	114.6	263.8	114.6	493
1.99	699.99	12.75	12.35	28.83	28.44	12.75	12.35	115.5	265.8	115.5	497
2.00	700.00	12.75	12.35	28.83	28.43	12.75	12.35	116.3	267.8	116.3	500

Figure 8-1. Watts Bar Ash Pond Primary Spillway Weir Stage-Discharge Rating Curve

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Dewatering
PROJECT NO.	92016.2202

COMPUTED BY / DATE	R.H.	07/27/12
CHECKED BY / DATE	M.S.	08/16/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	_	_

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

Calculation Description: Dewatering Pumping Rates

1.0 Objective

Determine pumping volume and rates required to dewater Watts Bar Ash Pond prior to construction.

2.0 Procedure

- 1.) From Elevation-Area incremental data, determine volume to be pumped each day then convert units to determine maximum pumping rate.
- 2.) Account for separation of two areas of pond by splitter dike.

3.0 References / Data Sources

1.) Proposed plan sheet Ash Pond Breaching Project Excavation and Cofferdam Plan Work Plan 1 (10W253-07).

4.0 Assumptions / Limitations

- 1.) Maximum drawdown rate is 1ft/day to limit stresses on embankments.
- 2.) Initial water surface elevation is approximately 704.5 ft, corresponding to crest of existing riser/barrel structures.
- 3.) Water surface elevation following rainfall event which fills pond is 701 ft, corresponding to breach elevation.
- 4.) Bottom of pond is between 693 ft and 694 ft, but 694 is the lowest elevation considered in this calculation.
- 5.) Pumping rate corresponding to 1 ft per day withdrawal rate varies depending on stage in pond with the highest pumping rate experienced when the water surface elevation is at its highest (704.5 ft).
- 6.) The two sides of the pond (split by splitter dike) will be hydraulically separate and pumped separately beginning between elevation 703 and 704 ft. Therefore the maximum pumping rate required is determined by the higher of the total pumping rate divided by two pumps or the maximum pumping rate for the larger of the two ponds once they are hydraulically separated.
- 7.) Water from the Ash Pond will be pumped through a silt bag prior to discharge to remove solids in the water. A Dirtbag 55 measuring 10' by 15' has an average capacity of 1,500 gpm or 3.3 cfs.

5.0 Calculations

5.1 Determine the Channel Dimensions and Lining

Page 45 of 219

- The attached spreadsheet named TVA_Ashpond_Dewatering.xls includes tables showing the compiled volume and pumping calculations. Table 1 lists the elevation/area and cumulative volumes for the pond. Refer to Table 2 for dewatering pumping rates varied by water surface elevation and Table 3 for pumping durations varied by pumping capacity.

6.0 Conclusions

- 1.) Initial dewatering of the Watts Bar Ash Pond will require removal of an estimated 16.2 million gallons using some combination of pumps and/or siphons to reduce the water surface elevation from 704.5 ft to 694 ft. The estimated pumping duration at a maximum drawdown rate of 1 ft/day is 11.5 days. The estimated duration for dewatering following a rainfall event which fills the pond to the elevation of the breach (701 ft) is 7 days at a maximum drawdown rate of 1 ft/day. Table 1 lists various pumping capacities which could be utilized to dewater the pond under a variety of schedules.
- 2.) The estimated maximum required pumping capacity to dewater the Watts Bar Ash Pond from the normal pool elevation of 704.5 ft is estimated at 3,853 gpm for the entire pond at a rate of 1/ft per day during a 10 hour work day. Between the elevation of 703 ft and 704 ft, the pond will split into two ponds. Once the ponds are hydraulically split, a maximum pumping capacity of 2,200 gpm will be required for the larger (north) of the two areas of the pond, and a maximum of 1,200 gpm for the smaller (south) pond based on a 1 ft/day drawdown rate with 10 hour workdays.

Table 1. Watts Bar Ash Pond Dewatering Pumping Rates

	North Pond ¹							South Pond			Combined						
Elev Range	Avg Area	Incremen	tal Volume	Pumping R ft/day -	ate (1 10 hrs) ^{2, 3}	Avg Area	Incremer	ntal Volume	Pumpii (1 ft/day -	ng Rate - 10 hrs) ^{2, 3}	Avg Area	Increme	ntal Volume	Cumulati	ive Volume	Pumping (1 ft/day - 10	
(ft)	(acre ft)	(cf)	(gal)	(cfs)	(gpm)	(acre ft)	(cf)	(gal)	(cfs)	(gpm)	(acre ft)	(cf)	(gal)	(cf)	(gal)	(cfs)	(gpm)
694-695	0.25	10,856	81,209	0.30	135	0.25	10,687	79,941	0.30	133	0.49	21,543	161,149	21,543	161,149	0.60	269
695-696	0.97	42,165	315,418	1.17	526	0.55	24,083	180,150	0.67	300	1.52	66,248	495,568	87,790	656,717	1.84	826
696-697	2.15	93,458	699,112	2.60	1,165	0.88	38,344	286,829	1.07	478	3.03	131,801	985,942	219,591	1,642,658	4.58	1,643
697-698	2.99	130,144	973,545	3.62	1,623	1.19	51,729	386,956	1.44	645	4.18	181,873	1,360,501	401,464	3,003,159	6.32	2,268
698-699	3.34	145,493	1,088,363	4.04	1,814	1.47	63,837	477,534	1.77	796	4.81	209,330	1,565,897	610,794	4,569,056	7.27	2,610
700-701	3.54	154,133	1,152,991	4.28	1,922	1.68	73,148	547,185	2.03	912	5.22	227,281	1,700,176	838,074	6,269,233	7.89	2,834
701-702	3.68	160,214	1,198,480	4.45	1,997	1.84	80,330	600,910	2.23	1,002	5.52	240,544	1,799,390	1,078,618	8,068,623	8.35	2,999
702-703	3.80	165,355	1,236,937	4.59	2,062	2.00	87,132	651,789	2.42	1,086	5.80	252,486	1,888,726	1,331,104	9,957,349	8.77	3,148
702-703	3.89	169,520	1,268,098	4.71	2,113	2.14	93,214	697,285	2.59	1,162	6.03	262,734	1,965,383	1,593,837	11,922,732	9.12	3,276
703-704							6.39	278,215	2,081,193	1,872,052	14,003,925	9.66	3,469				
704-704.5	-704.5 See Notes 1 and 4				See Notes 1 and 4			6.78	295,508	2,210,552	2,167,560	16,214,477	10.26	3,684			
704.5-705											7.09	309,003	2,311,505	2,476,563	18,525,982	10.73	3,853

Notes:

¹ The Ash Pond becomes hydraulically seperated by the splitter dike into north and south sides at approximately elevation 703.5.

² The Ash Pond shall be dewatered at a constant rate over a 10-hour duration such that the elevation drops by a maximum of 1 foot per day. The pumping rate over the 10-hour duration may be subject to change based on field observation of bank instability. Dewatering of the entire pond depth from elevation 704.5 ft to 694 ft will take a minimum of 11 days at 1 ft/day.

³ A 10 hour work day is assumed for the daily pumping duration, per direction from TVA staff.

⁴ The normal pool at the time the survey was performed was at elevation 704.5 feet.

⁵ All pumped water shall be filtered through a sediment bag prior to discharge.

⁶ Drawdown rates specified herein and use of sediment bags shall be adhered to for initial dewatering efforts as well as additional dewatering efforts that may be required during construction, which is expected to occur due to ground water and stormwater runoff contributions.

08/14/12

CLIENT TVA
PROJECT Watts Bar Ash Pond
DETAIL Proposed Ash Pond Inflow Channel

CHECKED BY / DATE B.N.

REVISION NO. / DATE
REVIEWED BY / DATE -

COMPUTED BY / DATE

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

Calculation Description: Propos

PROJECT NO. 92016.2202

Proposed Ash Pond Inflow Channel

1.0 Objective

Develop channel dimensions and liner required for modified channel entrance into lowered Ash Pond.

2.0 Procedure

- 1.) Determine existing channel dimensions for reference.
- 2.) Lay out proposed alignment to determine site constraints and channel slope.
- 3.) Calculate channel dimensions using Mannings equation in spreadsheet.
- 4.) Determine channel lining required based on permissible shear stress.

3.0 References / Data Sources

- 1.) Existing conditions survey of Ash Pond berm conducted May 2012 (file wf06_wbn12397_20120505.dwg).
- 2.) Plan sheet: Ash Pond Breaching Project Excavation and Cofferdam Plan Work Plan 1, 10W253-07.

4.0 Assumptions / Limitations

- 1.) The channel will connect the existing 8' wide channel (Elev 705') to the newly lowered Ash Pond (Elev 698') over a distance of approximately 90' with a slope of 0.10.
- 2.) Materials for lining shall be the same as those being used on the discharge spillway (riprap d50 = 15") for ease of procurement and construction.
- 3.) The design storm shall be the 1-yr since this is expected to be a temporary channel which may be removed after one year of service. Also, flows exceeding the 1-yr design storm are expected to take the alternate flow route through or to the west of the dry ash area.

5.0 Calculations

5.1 Determine the Channel Dimensions and Lining

- Refer to channel calculations spreadsheet.

6.0 Conclusions

- A channel lined with TDOT Class B riprap is recommended at a bottom width of 15' with 3:1 side slopes to realign the existing channel to enter the lowered ash pond at the increased slope.

CLIENT <u>TVA</u>

PROJECT Watts Bar Ash Pond

JOB NO. 92016.2202 DATE CHECKED COMPUTED BY R. Hopper

DATE 7/26/2012
PAGE NO. 1 of 2

011 014 014 05

DETAIL Channel Realignment CHECKED BY

TVA CALCULATION PACKAGE GENWBFFESCDX0000002012001005

OBJECTIVE

- Design channel realignment for channel entering lowered Ash Pond near proposed spillway.

Design Parameters:

-Drainage Area = 190 acres -Design storm frequency = 10 year

Approach:

- 1- Calculate the design flow rate
- 2- Calculate normal depth and select channel size
- 3- Determine channel lining

Development

1- Calculate the design flow rate

The maximum design flow rate from the HEC-HMS Analysis.

 $Q_{10-YR} = 58.0$ cfs 1-yr (50% of flow directed to other channel)

2- Calculate normal depth and select channel size

B - Channel width, feet

H,V - Channel sideslope

Y - Depth of flow, feet

A - Channel area, square feet

A - Channel area, square feet

R - Wetted perimeter, feet

R - Hydraulic radius, feet

Q - Design discharge, cfs

s - Channel longitudinal slope

n - Mannings Roughness coefficient

Channel Characteristics

B =	15	H,V =	3
n =	0.086	$Q_{10-YR} =$	58.0

Riprap Mannings n'!A1

The value for n is obtained from Attachment 1

s = 0.1 (Average channel slope based on proposed grades)

Υ	А	Р	R	Z_{REQ}	Z_{AV}
0.75	12.94	19.74	0.66	10.59	9.76
0.80	13.92	20.06	0.69	10.59	10.91
1.00	18.00	21.32	0.84	10.59	16.08

Normal depth =

Freeboard = 0.50 feet
Velocity at Normal Depth, feet/sec: 4.2 feet/sec

Design depth = 0.50 feet

Use = 1.5 feet

CLIENT <u>TVA</u>	JOB NO.	92016.2202	COMPUTED BY R. Ho	opper
PROJECT Watts Bar Ash Pond	DATE CHECKED		DATE 7/26/	2012
DETAIL Existing Channel Realig	n CHECKED BY		PAGE NO. 2 of 2)

3- Determine channel lining

- -- Calculate the shear stress and determine the appropriate channel lining using the 10 year 24-hr event
 - Calculate shear stress

T = ydS		_	T = shear stress in lb/sf
T =	4.99	lb/sf	$y = U.W. \text{ of } H_2O \text{ (62.4 lb/cf)}$

- Determine appropriate channel lining (Permissible shear stress TDOT Manual Table 5A-7)

Permissible Shear'!A1

Recommended Lining =

Riprap with 15" d50 (TDOT Class B)

http://www.tdot.state.tn.us/chief_engineer/assistant_engineer_design/design/drainmanpdf/chapter%205.pdf

RESULTS

Below are the recommended channel dimensions and characteristics.

- 1.5 = Channel Depth (feet)
- 4.2 = Channel Velocity (feet/sec) for the 10-year 24-hr
- 4.99 = Shear Stress for the 10-year 24-hr event

Riprap with 15" d50 (TDOT Class B)

CONCLUSION

Due to the increased slope and the in-situ dry ash material a riprap lining with d50 = 15" is recommended to line the channel realignment at a minimim slope of 0.10 and width of 15'.

TDOT DESIGN DIVISION DRAINAGE MANUAL

May 15, 2011

		Depth Ranges a						
Lining Category	Lining Type	0 - 0.5 ft	0.5 - 2.0 ft	> 2.0 ft				
	Concrete (Broom or Float Finish)	0.015	0.013	0.013				
	Gunite	0.022	0.02	0.02				
Rigid	Grouted Riprap	0.04	0.03	0.028				
rugiu	Stone Masonry	0.042	0.032	0.03				
	Soil Cement	0.025	0.022	0.02				
	Asphalt	0.018	0.016	0.016				
11.2	Bare Soil	0.023	0.02	0.02				
Unlined	Rock Cut	0.035	0.035	0.025				
	Type I	0.055	0.055 - 0.021	0.021				
Erosion Control	Type II	0.055	0.055 - 0.021	0.021				
Blankets ^b	Type III	0.055	0.055 - 0.021	0.021				
	Type IV	0.022	0.022 - 0.014	0.014				
Turf Reinforcement Mats ^b	Unvegetated	0.04	0.04 - 0.015	0.015				
10111	Class A1	0.124	0.072	0.038				
Machined Riprap c,d	Class B	0.153	0.086	0.041				
	Class C	0.181	0.095	0.042				

a Values listed are representative values for the respective depth ranges. Manning's roughness coefficients vary with the flow depth

^b General values based on vendor information. Consult with individual vendors for more specific information

^c Values interpolated from data provided in HEC-15

^d In general, $n = 0.0395(d_{50})^{0.167}$, where d_{50} = median stone diameter

TDOT DESIGN DIVISION DRAINAGE MANUAL

May 15, 2011

		Permissible Un	it Shear Stress	
Lining Category	Lining Type	(lb/ft²)	(Pa)	
	Type I	1.5	72	
Erosion Control Blanket a	Type II	1.75	84	
Erosion Control Blanket	Type III	2.00	96	
	Type IV	2.25	108	
	Unvegetated	3.0	143.6	
T (D) (Class I	6.0	288	
Turf Reinforcement Mat ^a	Class II	8.0	384	
	Class III	10.0	480	
	Class A	3.70	177.2	
	Class B	2.10	100.5	
Grass b	Class C	1.00	47.9	
ne Mariana	Class D	0.60	28.7	
:	Class E	0.35	16.8	
	Class A1	3.00	143.6	
Rock Riprap	Class B	5.00	239.4	
and a supplied of the section	Class C	6.70	320.8	
D 0.7	Non-cohesive	(See Hydrauli	c Engineering	
Bare Soil	Cohesive	Circular	No. 15)	

^a General values based on vendor information, assuming a vegetated condition. Maximum permissible shear stress for an unvegetated mat is 3.0 lb/ft²) Consult with individual vendors for more specific information.

Table 5A-7
Permissible Shear Stresses for Lining Materials
Reference: USDOT, FHWA, HDS-4 (2001) &

Erosion Control Technology Council, St. Paul, Minnesota

b Grassed linings are classified into 5 vegetal retardance classifications See Section 5.04.6.1 and Table 5A-4

Exhibit 3
Calculation Reference - Draft Geotechnical
Boring Logs

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 711 **Drilling Method/Rig:** 3.25" HSA// CME-55 Total Depth (ft.): 58.5

Drillers: Tim Hall Depth to Initial Water Level (ft-bgs): 27.2

Abandonment Method: Converted to observation well Drilling Date: Start: 6-11-12 End: 6-11-12

Borehole Coordinates: Field Screening Instrument:

N 464,486.5 E 2,331,360.8 Logged By: J. Wen

Sample Type	Sample Number	Sample Adv/Rec (inches)	711.0	Pocket Penetrometer Reading (tsf)	B		USCS Designation				Material Description		
SS	S-1	24/20	0	-PP>4.5 TV=0.5	13 9 10 10		FILL	Mois	hes of Grave t, very stiff, re	eddish brow			nd gravel.
SS	S-2	24/17		-PP>4.5 TV=1.2	4 7 10 12		7		t, very stiff, re	—			
SS	S-3	24/18	706.0 5	PP=3.5 TV=0.7	3 6 7 9				t, stiff, reddis				
SS	S-4	24/21		PP=4.5 TV=1.7	4 7 10 12				t, very stiff, re				
SS	S-5	24/21	701.0	PP=4.5 TV=0.9	2 4 8 12				t, stiff, reddisl				
SS	S-6	24/18	10	PP=2.3 TV=0.8	3 4 8 9				t, stiff, reddisl				
SS	S-7	24/20		PP=3.5 TV=0.9	4 5 9 11				t, stiff, reddisi				
			696.0		4 6			Mois -ALL	t, very stiff, da UVIAL SOIL-	lark gray, Cl -	LAY and SIL	T, trace sa	nd.
	EX	PLANA	TION O	F ABBR	REVIATIO	ONS					REMARK	S	

EXPLANATION OF ABBREVIATIONS

BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12

DTC

DRILLING METHODS: SAMPLING TYPES: Hollow Stem Auger Solid Stem Auger Hand Auger Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core HSA SSA HA AR DTR FR MR CC T JET D NX GP HP Air Rotary Dual Tube Rotary Geoprobe Hydro Punch Split Spoon Shelby Tube Foam Rotary Mud Rotary Reverse Circulation Cable Tool Jetting WS -OTHER: Wash Sample Driving
Drill Through Casing Above Ground

Surface

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer

TV = Torvane WOH = Weight of Hammer

Borehole coordinates are approximate based upon handheld GPS and elevations are estimated by overlaying coordinates with the

Date: Reviewed by:

	nt: TVA ect Locat	ion: Sn	rina Ci	ty Tenn	A22A			Project Name: TVA Watts Bar Fossil Plant Phase II Project Number: 95618-92016
1 10]	COL LUCAL	. 	ing Cl	Г. Т				1 TOJECT HUMBET. 900 TO-920 TO
Sample Type	Sample Number	Sample Adv/Rec (inches)		Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-8	24/18	696.0 15	PP=4.5 TV=1.2	11 16		FILL	
ss	S-9	24/24		-PP=3.0 TV=1.3	6 6 8 11		CL	Moist, stiff, dark brown, CLAY and SILT, some sand.
ss	S-10	24/24	691.0	-PP=2.5 TV=1.1	2 4 6 8			Moist, stiff, dark brown, CLAY and SILT, little sand.
ST	U-1	24/24	20				¬	Moist, dark brown, CLAY and SILT, little sand.
SS	S-11	24/24			2 4 7 6			Wet, stiff, dark brown, SILT, some clay, fine sand.
					2 2		SC	Wet, loose, light brown, fine SAND, some clay.
SS	S-12	24/24			5			
SS	S-13	24/24		-	1 WOH 1 4			Wet, very loose, light brown, fine SAND, some clay.
					1 1			Wet, very loose, dark gray, fine to medium SAND, some clay.

	nt: TVA							Project Name: TVA Watts Bar Fossil Plant Phase II
Proje	ect Locati	i on : Sp	ring Cit	ty, Tenr	nessee		1	Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-14	24/24			2		SC	
			671.0		4			
			40					
\rightarrow					2		GC	Wet, loose, dark gray, fine GRAVEL and fine to coarse SAND,
					3			some silt, clay (round shape river rocks).
SS	S-15	24/24		-	6]	
			666.0		10			
			45					
				_				Difficult drilling starting from 46 feet, sand heave before shale.
SS A	S-16	2/0			50/2"			NO SAMPLE RECOVERY.
					3:00		LS	Auger refusal at 48.2 feet-bgs.
NQ	C-1	21.6/2			2.00			RUN 1: 48.2 to 50 feet-bgs REC = 10%, RQD = 0%
\rightarrow			661.0 50		3:00 2:15]	Hard, slightly to completely weathered, gray, fine-grained,
			30		20			LIMESTONÉ, jointing horizontal, very closé to close, rough, planar, fresh to decomposed, open.
NQ	C-2	24/7			2:15			RUN 2: 50 to 52 feet-bgs
			_		6:00			REC = 33.3%, RQD = 0% Hard, slightly to completely weathered, gray, fine-grained,
NQ	C-3	12/0			0.00		ĺ	LIMESTONE, jointing horizontal to moderately dipping, very close,
			-		6:00			rough, stepped, fresh to decomposed, open.
NQ	C-4	24/18	'				İ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
INQ	0-4	24/10	7		7:00		l	No Recovery.
\dashv			656.0 55		5:00		SHALE	RUN 4: 53 to 55 feet-bgs
	o -						/LS	Hard, slightly to moderately weathered, gray with white, fine
NQ	C-5	24/12	-	-	5:00]	grained, LIMESTONE, jointing horizontal to low angle, very close to moderate spacing, rough, undulating, fresh to decomposed,
\perp					6:00			open.
NQ	C-6	18/0			3.00			RUN 5: 55 to 57 feet-bgs
	5 0	.5,0	_	-	3:00			REC = 50%, RQD = 0% Hard, slightly to moderately weathered, gray with white, fine
\neg								grained, LIMESTONE and SHALE, jointing moderately dipping, very close, rough, planar, fresh to decomposed, open.
								RUN 6: 57 to 58.5 feet-bgs
			6 <u>51.</u> 0 60	-				\\ REC = 0%, RQD = 0%
								No Recovery.
			_					\Boring terminated at 58.5 feet-bgs.
					1	1		

Drillers: Tim Hall

BOREHOLE LOG B-104

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 710

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 30

Depth to Initial Water Level (ft-bgs): Not Measured Drilling Date: Start: 6-12-12 End: 6-12-12 Abandonment Method: Grouted to ground surface

Borehole Coordinates: Field Screening Instrument:

N 464,634.1 E 2,331,336.6 Logged By: R. Lawrence

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf) Blows per 6-in	Graphic	USCS Designation	
SS	S-1	24/20	0	9 14 18 17		BOT- TOM ASH	Dry, dense, black, fine to coarse BOTTOM ASH, trace clay and gravel.
SS	S-2	24/19		8 19 38 41			Moist, very dense, black, fine to coarse BOTTOM ASH, trace clay.
SS	S-3	12/11	7 <u>05.0</u> 5	50			Moist, very dense, black, fine to coarse BOTTOM ASH, trace clay.
SS	S-4	24/15		11 10 9 6			Wet, medium dense, black, fine to coarse BOTTOM ASH, trace clay.
SS	S-5	24/14	700.0	3 3 4 4			Wet, loose, black, fine to coarse BOTTOM ASH.
SS	S-6	24/0	10	2 4 6 4			NO SAMPLE RECOVERY.
SS	S-7	24/14		7 3 3 2			Wet, loose, black, fine to coarse BOTTOM ASH.
			695.0	8 3			Wet, loose, black, medium coarse to coarse BOTTOM ASH.

EXPLANATION OF ABBREVIATIONS

Surface

DRILLING METHODS: SAMPLING TYPES: Hollow Stem Auger Solid Stem Auger Hand Auger Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS BX NX GP HP HA AR DTR FR MR RC CT JET D Air Rotary Dual Tube Rotary Geoprobe Hydro Punch Split Spoon Shelby Tube Foam Rotary Mud Rotary Reverse Circulation Cable Tool Jetting WS -OTHER: Wash Sample Driving
Drill Through Casing Above Ground DTC

BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer TV = Torvane

WOH = Weight of Hammer

Borehole coordinates are approximate based upon handheld GPS and elevations are estimated by overlaying coordinates with the

Date:

REMARKS

Reviewed by:

	: TVA							Project Name: TVA Watts Bar Fossil Plant Phase II
Projec	ct Locati	i on : Sp	ring Ci	ty, Tenn	essee			Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-8	24/24	15		3	3	BOT- TOM ASH	
SS	S-9	24/24		-PP=2.2 TV=0.5	5 1 1 6	3	BOT- TOM ASH	
SS	S-10	24/24		-	8 6 5 5		/ CL	Wet, stiff, dark gray, CLAY and black, medium to coarse BOTTOM ASH, trace sand.
ST	U-1	24/24	20	-			?	Wet, dark gray, CLAY and black, medium to coarse BOTTOM ASH, trace sand.
SS	S-11	24/24		PP=0.5 TV=0.2	4 4 7 6 5		СН	Wet, stiff, dark gray, CLAY, trace sandALLUVIAL SOIL- Wet, stiff, dark gray, CLAY, trace sand.
SS	S-12	24/24		PP=1.0 TV=0.5	5 5 6			
SS	S-13	24/24	690.0	-PP=0.5 TV=0.2	6 7 7 9			Wet, stiff, dark gray, CLAY, little clay, trace sand.
			680.0					Boring terminated at 30 feet-bgs.
			675.0 35 					
				_				

BOREHOLE LOG B-104A

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 711.04

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 28

Drillers: Tim Hall Depth to Initial Water Level (ft-bgs): 25.9

Abandonment Method: Grouted to ground surface Drilling Date: Start: 6-12-12 End: 6-12-12

Borehole Coordinates: Field Screening Instrument:

N 464,614.4 E 2,331,123.6 Logged By: R. Lawrence

	Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
	SS	S-1	24/22	0		6 19 18 16		BOT- TOM ASH	Dry, dense, black, fine to coarse BOTTOM ASH.
	SS	S-2	24/19			6 17 18 22			Dry, dense, black, fine to coarse BOTTOM ASH, trace clay.
	SS	S-3	24/20	7 <u>06.</u> 0 5		12 17 23 23			Moist, dense, black, fine to coarse BOTTOM ASH, little clay.
	SS	S-4	24/16			15 20 18 19			Wet, dense, black, fine to coarse BOTTOM ASH.
21/0/0	SS	S-5	24/19	701.0		4 8 4 12			Wet, medium dense, black, medium coarse to coarse BOTTOM ASH.
CORP. GD I	ST	U-1	15/15	10					Wet, black, medium coarse to coarse BOTTOM ASH.
E II RAL.GPJ COM	SS	S-6	24/22			20 21 17 17			Wet, dense, black, medium coarse to coarse BOTTOM ASH.
I VA PHASE				696.0		4	Z		Wet, loose, black, coarse BOTTOM ASH.
۱ ک									1

EXPLANATION OF ABBREVIATIONS

BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12

DRILLING METHODS: SAMPLING TYPES: Hollow Stem Auger Solid Stem Auger Hand Auger Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS BX NX HA AR DTR FR Air Rotary Dual Tube Rotary GP HP Geoprobe Hydro Punch Split Spoon Shelby Tube Foam Rotary MR RC Mud Rotary Reverse Circulation CT JET D Cable Tool Jetting WS -OTHER: Wash Sample Driving
Drill Through Casing Above Ground DTC Surface

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer

TV = Torvane

WOH = Weight of Hammer

Groundwater level was measured during drilling and may not represent stabilized levels.

Reviewechbydinates are approximate based upon handheld Date:

and elevations are estimated by overlaying coordinates with the

BOREHOLE LOG B-104A

	nt: TVA ject Locat	i on : Sp	ring Ci	ty, Tenn	essee			Project Name: TVA Watts Bar Fossil Plant Phase II Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-7	24/16	696.0 15	ш	4	3	BOT- TOM ASH	
SS	S-8	24/8		-	13 8 4 3			Wet, medium dense, black, coarse BOTTOM ASH.
SS	S-9	24/22	<u>- 691.0</u> 20	-	7 7 6 6			Wet, medium dense, black, coarse BOTTOM ASH.
					4 8		Î	Wet, medium dense, black, coarse BOTTOM ASH.
SS	S-10	24/24		PP=2.5 TV=0.5	5 10		CL	Wet, stiff, reddish brown, CLAYALLUVIAL SOIL- Wet, medium stiff, reddish brown, CLAY.
ss	S-11	24/24	_686.0 _25	PP=1.0 TV=0.5	3 4 5			
SS	S-12	24/24		PP=1.2 TV=0.7	3 4 6 7			Wet, stiff, reddish brown, CLAY, trace sand.
			681.0 30 - - - - - - - - - 35					Boring termintated at 28 feet-bgs.

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 711

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 58

Drillers: Tim Hall Depth to Initial Water Level (ft-bgs): 29.2 Abandonment Method: Grouted to ground surface **Drilling Date: Start:** 6-12-12 **End:** 6-13-12

Borehole Coordinates: Field Screening Instrument:

N 464,726.4 E 2,331,408.3 Logged By: R. Lawrence

L								
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
			0		5	\bowtie	FILL	6-inches GRAVEL/FLY ASH -FILL-
ss	S-1	24/22		PP>4.5 TV=1.2	11 10 10			Moist, very stiff, reddish brown, CLAY, trace sand.
					7			Moist, very stiff, reddish brown, CLAY, trace sand.
SS	S-2	24/20		PP>4.5 TV=1.2	7 10 11			
					5			Moist, stiff to very stiff, reddish brown, CLAY, little sand.
SS	S-3	24/24	_7 <u>06.</u> 0_ 5	PP>4.5 TV=1.5	5 10 14			
SS	S-4	24/24		PP=4.5 TV=2.0	5 8 8 11			Moist, very stiff, dark gray, SILT and reddish brown, CLAY, trace sand.
SS	S-5	24/24		PP>4.5 TV=1.5	5 7 7			Moist, stiff, dark gray, SILT and reddish brown, CLAY, trace sand.
			7 <u>01.0</u> 10		11			Moist, stiff, dark gray, SILT and reddish brown, CLAY, trace sand.
SS	S-6	24/20	_	PP=3.5 TV=1.0	5 6 8 6			
SS	S-7	24/24		PP>4.5 TV=1.2	3 7 8			Moist, very stiff, reddish brown, CLAY, trace sand.
			696.0		9 1 4			Moist, stiff, reddish brown to gray, CLAY, some sand.

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: SAMPLING TYPES: Hollow Stem Auger Solid Stem Auger Hand Auger Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS BX NX GP HP HA AR DTR FR Air Rotary Dual Tube Rotary Geoprobe Hydro Punch Split Spoon Shelby Tube Foam Rotary MR RC Mud Rotary Reverse Circulation CT JET D Cable Tool Jetting WS -OTHER: Wash Sample Driving
Drill Through Casing Above Ground DTC Surface

BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer TV = Torvane

WOH = Weight of Hammer

Groundwater level was measured during drilling and may not represent stabilized levels.

Reviewechbydinates are approximate based upon handheld Date:

REMARKS

and elevations are estimated by overlaying coordinates with the

	nt: TVA ect Locat	ion: Cn	rina Ci	ty Tonn				Project Number: 05618 03016
Proj	eci Locai	Ton: Sp	ring Ci	ty, rem	lessee		1	Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)		Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-8	24/24	696.0 15	PP=2.0 TV=0.7	6 8		FILL	
ST	U-1	24/21		-				Moist, reddish brown to gray, CLAY, some sand.
SS	S-9	24/24	691.0	-PP=1.2 TV=0.2	3 5 3 4		CL	Wet, medium stiff to stiff, dark gray CLAY, trace sandALLUVIAL SOIL-
SS	S-10	24/4		-PP=1.5 TV=0.2	3 3 5 5		^	Wet, medium stiff to stiff, dark gray CLAY, trace sand.
SS	S-11	24/18	686.0	-PP=1.0 TV=0.1	1 2 4 3			Wet, medium stiff, dark gray CLAY, trace sand.
SS	S-12	24/6	681.0 30		WOH WOH 2 2		SC	Wet, very loose, gray, fine to medium SAND, little silt.
			30					
SS	S-13	24/24	- 676.0 35 		1 1 2 2			Wet, very loose, brown, fine SAND, some silt, little clay.
			 		2 1			Wet, very loose, gray, fine to medium SAND, some clay, silt.

	nt: TVA			_				Project Name: TVA Watts Bar Fossil Plant Phase II
Proj	ect Locat	ion: Sp	ring Ci	ty, Tenr	essee			Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-14	24/24			2		SC	
			_671.0 _40 		1			
					4		SW- SM	Wet, dense to very dense, gray, fine to coarse SAND, some gravel, trace silt, roots.
SS	S-15	24/24	666.0 _45		4 31 43		Sivi	graver, trace siit, 100ts.
							1	
					5:00		GW /	Auger refusal at 48.0 feet-bgs.
					-		SHALE / LS	REC = 25%, RQD = 7%
NQ	C-1	60/15	661.0 50		5:00 6:00]	Hard, moderately weathered, gray, aphanitic, INTERBEDDED SHALE, LIMESTONE, and RIVER ROCK, very thin to thin bedding, low angle jointing, very close to close spacing, rough, discolored, open.
			-		8:00 8:00			
			-		8:00		SHALE	RUN 2: 53 to 58 feet-bas
			 656.0		8:00		/LS	REC = 25%, RQD = 0% Hard, highly weathered, gray, aphanitic, INTERBEDDED SHALE and LIMESTONE, very thin bedding, low angle to moderately dipping jointing, very close spacing, rough, discolored, open.
NQ	C-2	60/15	656.0 55		11:00 9:00		<u> </u> 	
					10:00			
								Boring terminated at 58.0 feet-bgs.
			6 <u>51.</u> 0_ 60					

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 693.9

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 45.5

Drillers: Tim Hall / Alan Depth to Initial Water Level (ft-bgs): 12.2 Abandonment Method: Grouted to ground surface **Drilling Date: Start:** 6-13-12 **End:** 6-14-12

Borehole Coordinates: Field Screening Instrument:

N 464,751.2 E 2,331,512.0 Logged By: R. Lawrence

Sample Type	Sample Number	Sample Adv/Rec (inches)	693.9	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log		Material Description
SS	S-1	24/18	0	-PP=2.5	6 12 8 12		FILL	Dry, very stiff, brown, SILT, little sand. -FILL -
SS	S-2	24/16		-PP=2.5	6 5 4 4			Moist, stiff, brown, SILT, trace sand.
SS	S-3	24/20	_6 <u>88.9</u> _5	-PP=1.0 TV=0.2	1 2 2 3		CL	Moist, soft to medium stiff, brown, CLAY, trace rootsALLUVIAL SOIL-
SS	S-4	24/12			2 2 2 3		CL	Moist, very loose to loose, brown, fine SAND, some silt, clay, trace roots.
SS	S-5	24/15	683.9 10	PP=2.0 TV =0.4	2 2 3 5			Moist, medium stiff, brown, CLAY, some sand.
SS	S-6	24/24	10		2 2 2 3			Wet, very loose to loose, brown, fine SAND, some silt, clay.
s 							-	AN A L
ST	U-1	24/24	 				SM	Wet, brown, fine to medium SAND, little silt, clay.
-			678.9					
1								1

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: SAMPLING TYPES: Hollow Stem Auger Solid Stem Auger Hand Auger AS CS BX NX GP HP HA AR DTR FR Air Rotary Dual Tube Rotary Foam Rotary MR RC Mud Rotary Reverse Circulation CT JET D Cable Tool Jetting WS -OTHER: Driving
Drill Through Casing DTC

BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core Geoprobe Hydro Punch Split Spoon Shelby Tube Wash Sample Above Ground

Surface

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long

PP = Pocket Penetrometer TV = Torvane

WOH = Weight of Hammer

Groundwater level was measured during drilling and may not represent stabilized levels.

Reviewechbydinates are approximate based upon handheld Date:

and elevations are estimated by overlaying coordinates with the

Clie	nt: TVA							Project Name: TVA Watts Bar Fossil Plant Phase II
Proj	ect Locat	ion: Sp	ring Cit	ty, Tenr	nessee			Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
			15				SM	
SS	S-7	24/0			2 2 2 2			NO SAMPLE RECOVERY.
					1		SC	Wet, loose, brown, fine to medium SAND, little clay.
SS	S-8	24/24	673.9		2 2 3			
			20		4			Wet, loose to medium, brown, fine to medium SAND, little clay, silt.
ss	S-9	24/24			4 4			ont.
					4			
			-					
					WOH			Wet, very loose, brown, fine to medium SAND, some silt, clay.
SS	S-10	24/24			1 2			Wet, very loose, brown, line to mediam GAND, some siit, day.
			668.9		2			
			25					
				N				
ss	S-11	24/24			7 12 20	//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	GW / SHALE	Wet, dense, dark gray, fine to coarse gravel size RIVER ROCK and weathered SHALE.
			663.9		52/5"			Auger refusal at 31.5 feet-bgs.
			30		0:30	///\		DIN 4. 00 54- 05 55
			-	"	0.30	H	GW / SHALE	RUN 1: 30.5 to 35.5 feet-bgs REC = 33%, RQD = 0%
			-	_	0:30		/LS	Hard, highly weathered, gray, aphanitic, INTERBEDDED SHALE, LIMESTONE, and RIVER ROCK, very thin bedding, low angle to moderately dipping jointing, very close to close spacing, rough,
NQ	C-1	60/20	ļ -		4:30	Ħ		discolored, open.
					4:30		j	
			-				İ	
			658.9		4:30		1	
\dashv			35		4:30		SHALE	RUN 2: 35.5 to 40.5 feet-bgs
I			-	-			/LS	REC = 60%, RQD = 10%
		1	1	1	4:00	\vdash	i	Hard, moderately to highly weathered, gray, aphanitic, INTERBEDDED SHALE and LIMESTONE, very thin to thin
						-	1	
NQ	C-2	60/36			5:30			bedding, low angle to moderately dipping jointing, very close to close spacing, rough, discolored, open.

	ent: TVA ject Locati	on: Sp	ring Cit	y, Tenr	nessee			Project Name: TVA Watts Bar Fossil Plant Phase II Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	
			653.9 40		3:30		SHALI /LS	
NQ	C-3	60/17	 45		3:30 4:30 3:30 3:00			RUN 3: 40.5 to 45.5 feet-bgs REC = 28%, RQD = 0% Medium hard to hard, highly weathered, gray, aphanitic, INTERBEDDED SHALE and LIMESTONE, very thin bedding, horizontal to moderately dipping jointing, very close spacing, rough, discolored, open.
			633.9 60					

Drilling Date: Start: 6-13-12 **End:** 6-13-12

BOREHOLE LOG B-107

Abandonment Method: Converted to observation well

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 710.04

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 44.3

Drillers: Tim Hall Depth to Initial Water Level (ft-bgs): 27.8

Borehole Coordinates: Field Screening Instrument:

N 464,931.0 E 2,331,455.9 Logged By: R. Lawrence

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	SeQ		Material Description
			0			XXXX	SPHAI FILL		inches ASPHALT.
							FILL		inches GRAVEL BASEFILL-
								l M	oist, reddish brown, CLAY, trace sand.
ss	S-1	24/12		-PP=2.5 TV=0.8	8 8 7			M	oist, stiff to very stiff, reddish brown, CLAY, trace sand.
					8 5				olet etiff gray CLAV trace cond
SS	S-2	24/20	7 <u>05.0</u> 5	PP>4.5 TV=2.0	6 7 12			IVI	oist, stiff, gray, CLAY, trace sand.
SS	S-3	24/24		PP>4.5 TV=1.8	3 6 9 10			M	oist, stiff to very stiff, reddish brown, CLAY, trace sand.
SS	S-4	24/24	700.0	PP>4.5 TV=2.0	6 7 10 12			M	oist, very stiff, gray to reddish brown, CLAY, trace sand.
ST	U-1	24/18	10					M	oist, gray to reddish brown, CLAY, trace sand.
SS	S-5	24/20		-PP=2.5 TV=1.3	4 8 10 13			M	oist, very stiff, gray to reddish brown, CLAY, trace sand.
			695.0		4 9			М	oist, very stiff, gray to reddish brown, CLAY, trace sand.
	EX	PLANA	TION O	F ABBF	REVIAT	IONS	-		REMARKS
HSA SSA HA AR DTR FR MR RC CT	ING METHODS - Hollow Stem - Solid Stem - Hand Auger - Air Rotary - Dual Tube F - Foam Rotar - Mud Rotary - Reverse Cir - Cable Tool - Jetting - Driving - Drill Througl	n Auger Auger Rotary Y culation		A C B N G H S S	S - Ca X - 1.9 X - 2.6 P - Ga P - Hy S - Sp T - Sh VS - W VTHER: GS - A	ger/Grab difornia S 5" Rock (1" Rock (eoprobe dro Pund dit Spoor delby Tub ash Sam	o Sample Sampler Core Core ch n pe		Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer TV = Torvane WOH = Weight of Hammer Borehole coordinates are approximate based upon handheld GPS and elevations are estimated by overlaying coordinates with the survey. Reviewed by: Date:

EXPLANATION OF ABBREVIATIONS

Clie	nt: TVA							Project Name: TVA Watts Bar Fossil Plant Phase II
Proj	ject Locat	ion: Sp	ring Ci	ty, Tenr	nessee			Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-6	24/24	15	PP=4.0 TV=1.2	13 13		FILL	
SS	S-7	24/20		PP=2.5 TV=1.0	WOH 7 8 10		CL	Wet, stiff to very stiff, brown, CLAY, trace siltALLUVIAL SOIL- Wet, stiff, brown, CLAY, trace silt.
SS	S-8	24/24	690.0	PP=1.0 TV=0.6	5			
SS	S-9	24/12	_ 20 	PP=1.0 TV=0.6	4 4 6 4		?	Wet, stiff, brown, CLAY, trace silt.
SS	S-10	24/24		-PP=2.0 TV=0.4	1 3 3 3 3			Wet, medium stiff, reddish brown, CLAY, some sand, trace silt.
SS	S-11	24/0	-		1 1 1			NO SAMPLE RECOVERY.
			680.0		2			
SS	S-12	24/24	675.0 35		WOH WOH 1 3		SC	Wet, very loose, brown, fine to medium SAND, little clay.
					1 2			Wet, very loose, brown to gray, fine SAND, some silt, little clay.

Page Schoerest193 of 3

650.0 60

BOREHOLE LOG B-107

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II Project Location: Spring City, Tennessee **Project Number: 95618-92016** Pocket Penetrometer Reading (tsf) Blows per 6-in USCS Designation Graphic Log Sample Type Elev. Depth (ft.) Sample Number Material Description SS 24/20 S-13 SC 3 670.0 40 12 GP Wet, very dense, dark gray, fine GRAVEL, some sand. SS S-14 15/15 29 58/3" Boring terminated at 44.3 feet-bgs upon auger refusal. 665.0 45 660.0 50 BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12 <u>655.0</u>

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 710.48

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 57

Drillers: Alan Depth to Initial Water Level (ft-bgs): 22.7

Abandonment Method: Grouted to ground surface **Drilling Date: Start:** 6-14-12 **End:** 6-14-12

Borehole Coordinates: Field Screening Instrument: N 465,254.7 E 2,331,425.3 Logged By: R. Lawrence

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-1	24/16	0	-PP=2.0	7 18 12 6		FILL	Dry, medium to dense, gray, fine to medium GRAVEL, trace clay. Dry, medium stiff, reddish brown, CLAY, trace gravel and sand.
SS	S-2	24/18		-PP=2.5 TV=1.2	5 3 4 6			Moist, medium stiff, reddish brown, CLAY, trace sand.
SS	S-3	24/20		PP=3.0 TV=1.5	2 5 7 9			Moist, stiff, reddish brown, CLAY, trace sand.
SS	S-4	24/20		PP=3.5 TV=1.2	2 6 7 9			Moist, stiff, reddish brown, CLAY, trace sand.
SS	S-5	24/20		PP=4.2 TV=1.2	2 5 7 9			Moist, stiff, reddish brown, CLAY, trace sand, roots.
SS	S-6	24/24	7 <u>00.5</u> 10	PP>4.5	3			Moist, stiff, reddish brown, CLAY, trace sand, roots.
33	3-0	24124		TV=2.1	10 14			Moist, stiff, dark gray SILT, trace sand and clay.
SS	S-7	24/22		-PP=3.5 TV=0.9	3 6 7 8			Moist, stiff, dark gray SILT, trace sand.
			695.5		3 4			Moist, stiff, dark gray SILT, trace sand.

EXPLANATION OF ABBREVIATIONS

Surface

DRILLING METHODS: SAMPLING TYPES: Hollow Stem Auger Solid Stem Auger Hand Auger Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS BX NX GP HP HA AR DTR FR Air Rotary Dual Tube Rotary Geoprobe Hydro Punch Split Spoon Shelby Tube Foam Rotary MR RC Mud Rotary Reverse Circulation CT JET D Cable Tool Jetting WS -OTHER: Wash Sample Driving
Drill Through Casing Above Ground

BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12

DTC

represent stabilized levels.

Reviewechbydinates are approximate based upon handheld Date:

WOH = Weight of Hammer

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches

Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer TV = Torvane

Groundwater level was measured during drilling and may not

and elevations are estimated by overlaying coordinates with the

	nt: TVA							Project Name: TVA Watts Bar Fossil Plant Phase II
Proj	ject Locat	ion: Sp	ring Ci	ty, Tenr	nessee			Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-8	24/24	15	PP=3.0 TV=1.0	6 7		FILL	
ST	U-1	24/18						Moist, reddish brown, CLAY, little silt, trace sand.
ss	S-9	24/3	690.5		3 4 5 7			Moist, stiff, reddish brown, CLAY, trace sand.
SS	S-10	24/24	20	PP=2.5 TV=1.0	3 4 4 5		^	Moist, medium stiff to stiff, reddish brown, CLAY, some sand.
SS	S-11	24/24	685.5		1 2 2 2		CL	Wet, very loose to loose, brown, CLAY and fine SANDALLUVIAL SOIL-
SS	S-12	24/8	680.5 30		1 2 2 3			Wet, very loose to loose, brown, fine to medium coarse SAND, some silt, clay, trace gravel, roots.
			- -		WOH		SC	Wet, very loose, gray, fine SAND, some clay.
SS	S-13	24/24	675.5 35		WOH 1 2			
					WOH 1			Wet, very loose, gray, fine SAND, some clay.

	nt: TVA ect Locat	i on: Sn	rina Cit	v Tenr	20220		•	Project Name: TVA Watts Bar Fossil Plant Phase II Project Number: 95618-92016
FIOJ	ect Locati	юн. эр	ing Cit		103300			Project Number: 93010-92010
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-14	24/24			2		SC	
			670.5 40 		3			
					3		CW	Wet and implementation of the temporary size DIVED
SS	S-15	24/22	665.5_ 45		9 9 27		GW	Wet, medium dense, gray, fine to coarse gravel size RIVER ROCK and fine to coarse SAND.
							1	Auger refusal at 47.1 feet-bgs.
NQ	C-1	60/23	660.5		1:00 1:30 5:00 4:00		GW / SHALE / LS	Hard, highly weathered, gray, aphanitic, INTERBEDDED SHALE, LIMESTONE, and RIVER ROCK, extremely thin to thin bedding, horizontal to moderately dipping jointing, very close spacing, rough, discolored, open.
NQ	C-2	60/27	655.5 55		6:00 5:00 4:30		SHALE /LS	RUN 2: 52 to 57 feet-bgs REC = 45%, RQD = 7% Hard, highly weathered, gray, aphanitic, INTERBEDDED SHALE and LIMESTONE, extremely thin to thin bedding, horizontal to low angular jointing, very close spacing, rough, discolored, open.
								Boring terminated at 57.0 feet-bgs.

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 706.53

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 30

Drillers: Tim Hall Depth to Initial Water Level (ft-bgs): Not Encountered Abandonment Method: Grouted to ground surface **Drilling Date: Start:** 6-15-12 **End:** 6-15-12

Borehole Coordinates: Field Screening Instrument:

N 464,949.2 E 2,331,015.2 Logged By: R. Lawrence

Sample Type	Sample Number	Sample Adv/Rec (inches)	706.5	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-1	24/4	0		1 1 WOH 1		FLY ASH	Dry, very loose, black, fine FLY ASH, little roots.
SS	S-2	24/24			WOH WOH WOH		1	Wet, very loose, black, FLY ASH, trace roots.
SS	S-3	24/2	7 <u>01.5</u> 5		WOH WOH WOH			Wet, very loose, black, FLY ASH, little gravel.
SS	S-4	24/6			WOH WOH WOH			Wet, very loose, black, FLY ASH.
SS	S-5	24/20	696.5 10		WOH WOH WOH			Wet, very loose, black, FLY ASH.
SS	S-6	24/12	10		WOH WOH WOH		ML / FLY ASH	Wet, loose, black to gray, SILT and FLY ASH, trace roots and gravel.
ST	U-1	24/24						Wet, black to gray, SILT and FLY ASH, trace roots and gravel.
			691.5		4			Wet, stiff, gray, SILT, trace clayALLUVIAL SOIL-
:1								

EXPLANATION OF ABBREVIATIONS

Surface

DRILLING METHODS: SAMPLING TYPES: Hollow Stem Auger Solid Stem Auger Hand Auger Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS BX NX GP HP HA AR DTR FR Air Rotary Dual Tube Rotary Geoprobe Hydro Punch Split Spoon Shelby Tube Foam Rotary MR RC Mud Rotary Reverse Circulation CT JET D Cable Tool Jetting WS -OTHER: Wash Sample Driving
Drill Through Casing Above Ground DTC

BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer TV = Torvane WOH = Weight of Hammer

Groundwater level was measured during drilling and may not represent stabilized levels.

Reviewechbydinates are approximate based upon handheld Date:

REMARKS

and elevations are estimated by overlaying coordinates with the

	nt: TVA ject Locat	ion: Sp	rina Ci	tv. Tenn	essee			Project Name: TVA Watts Bar Fossil Plant Phase II Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	
SS	S-7	24/24	15 	PP=1.2 TV=0.6	5 7 11		CL	Wet, stiff, reddish brown, CLAY, trace sand and roots.
SS	S-8	24/12		-PP=1.7 TV=0.7	2 4 5 6			Wet, stiff, reddish brown, CLAY, trace silt and sand.
SS	S-9	24/24	_686.5 	-PP=1.0 TV=0.2	1 4 5 6			Wet, stiff, reddish brown, CLAY, trace silt and sand.
SS	S-10	24/24	 - 681.5 25	-PP=1.0 TV=0.5	1 3 4 5			Wet, medium stiff, reddish brown, CLAY, little silt, tace sand.
SS	S-11	24/24		-PP=0.5 TV=0.2	WOH 1 2		ML	Wet, soft, light brown, SILT, little sand, trace gravel.
			676.5 30		3			Boring terminated at 30 feet-bgs.
			 <u>671.5</u> 35 					
				-				

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 707.29

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 33.1

Drillers: Tim Hall Depth to Initial Water Level (ft-bgs): 7.2

Abandonment Method: Converted to observation well **Drilling Date: Start:** 6-15-12 **End:** 6-15-12

Borehole Coordinates: Field Screening Instrument:

N 464,996.7 E 2,330,939.0 Logged By: R. Lawrence

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-1	24/12	0		2 1 2 2		FLY ASH	Moist, soft, gray to black, TOP SOIL and FLY ASH, trace roots.
SS	S-2	24/3			1 WOH 1 WOH			Moist, soft, gray to black, TOP SOIL and FLY ASH.
SS	S-3	24/8	7 <u>02.3</u> 5		WOH WOH WOH			Wet, very loose, black, fine FLY ASH.
SS	S-4	24/18			WOH WOH WOH			Wet, very loose, black, fine FLY ASH.
SS	S-5	24/2	697.3 10		WOH WOH WOH			Wet, very loose, black, fine FLY ASH.
ST	U-1	24/20	10					Wet, black, fine FLY ASH.
SS	S-6	24/24			WOH WOH 1 2	1		Wet, very loose, black, fine FLY ASH.
							ML	Wet, very soft, dark gray, SILT, some fly ash, trace roots.

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: SAMPLING TYPES: Hollow Stem Auger Solid Stem Auger Hand Auger Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS BX NX GP HP HA AR DTR FR MR RC CT JET D Air Rotary Dual Tube Rotary Geoprobe Hydro Punch Split Spoon Shelby Tube Foam Rotary Mud Rotary Reverse Circulation Cable Tool Jetting WS -OTHER: Wash Sample Driving
Drill Through Casing Above Ground DTC Surface

BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer TV = Torvane

WOH = Weight of Hammer

Borehole coordinates are approximate based upon handheld GPS and elevations are estimated by overlaying coordinates with the

	nt: TVA							Project Name: TVA Watts Bar Fossil Plant Phase II
Proj	ject Locat	ion: Sp	ring Ci	ty, Tenr	nessee			Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	
ss	S-7	24/18	15		WOH WOH WOH		ML	Wet, very soft, dark gray SILT, little fly ash, roots.
ss	S-8	24/18		-PP=0.7 TV=0.2	1 2 3 4		CL	Wet, stiff, reddish brown, CLAY, trace sand and fly ashALLUVIAL SOIL-
SS	S-9	24/9	6 <u>87.3</u> 20	-PP=0.7 TV=0.1	WOH 1 2 2			Wet, soft, brown, CLAY, little gray silt, trace sand.
ss	S-10	24/6			1 WOH			Wet, soft, brown, CLAY, little gray silt, trace sand.
			682.3 25		2			
SS	S-11	24/24	677.3 30		1 1 2 4		SM	Wet, very loose, brown, fine to medium SAND, little silt, trace clay and gravel.
SS	S-12	1/1	- 		50/1"		(GW)	Wet, very dense, brown, fine to coarse GRAVEL, little sand. Boring terminated at 33.1 feet-bgs upon auger refusal.
			672.3 35 					

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 706.54

Drilling Method/Rig: 3.25" HSA// CME-55 Total Depth (ft.): 30

Drillers: Alan / Tim Hall Depth to Initial Water Level (ft-bgs): 7.4

Abandonment Method: Grouted to ground surface **Drilling Date: Start:** 6-14-12 **End:** 6-14-12

Borehole Coordinates: Field Screening Instrument:

N 465,122.0 E 2,330,987.2 Logged By: R. Lawrence

L .												
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.) 706.5	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	۵		Material Description			
SS	S-1	24/9	0		1 1 1 1		FLY ASH	Moi	ist, very loose, black, fine FLY ASH, trace clay, roots.			
SS	S-2	24/0			1 WOH 1 WOH		1	NO	SAMPLE RECOVERY.			
SS	S-3	24/16	7 <u>01.5</u> 5		WOH WOH WOH			We	t, very loose, black, fine, FLY ASH.			
SS	S-4	24/22			WOH WOH 1 WOH			We	t, very loose, black, fine, FLY ASH.			
SS	S-5	24/20	696.5		WOH WOH				Wet, very loose, black, fine, FLY ASH.			
SS	S-6	24/24	10		WOH WOH 1 5			We	Wet, very loose, black, fine, FLY ASH.			
ss	S-7	24/2			WOH WOH WOH				t, very loose, black, fine, FLY ASH.			
			691.5		WOH 1		CL	-AL	t, soft, gray to brown, CLAY, trace fly ash and roots. LUVIAL SOIL-			
DRILLI HSA SSA HA AR DTR	EX	PLANA		F ABBF	REVIAT	IONS	•		REMARKS			
DRILLING METHODS: SAMPLING TYPES:							o Sample ampler Core Core ch e ple	_	Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long PP = Pocket Penetrometer TV = Torvane WOH = Weight of Hammer Groundwater level was measured during drilling and may not represent stabilized levels. Reviewecbbydinates are approximate based upon handheld Date: and elevations are estimated by overlaying coordinates with the			

EXPLANATION OF ABBREVIATIONS

REMARKS

and elevations are estimated by overlaying coordinates with the

	nt: TVA ect Locat	i on : Sp	ring Ci	ty, Tenr	essee			Project Name: TVA Watts Bar Fossil Plant Phase II Project Number: 95618-92016
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation	Material Description
SS	S-8	24/24	691.5 15	а.	1 2		CL	
ss	S-9	24/24		-PP=0.5 TV=0.7	WOH WOH 1			Wet, soft, gray to brown, CLAY, trace fly ash and roots.
SS	S-10	24/6	- _686.5 _20		WOH WOH 3			Wet, soft, gray to brown, CLAY, trace sand. Wet, soft to medium stiff, reddish brown, CLAY, some silt.
SS	S-11	24/24	 		1 2 2 5		(T	wet, son to medium sun, redusir brown, CLAT, some sin.
ST	U-1	24/19	 681.5					Wet, reddish brown, CLAY, some silt.
SS	S-12	24/24	681.5 25	-PP=0.5	1 1 1			Wet, very soft to soft, gray, CLAY, trace sand.
SS	S-13	24/24	676.5		1 2 2 3			Wet, soft to medium stiff, gray, CLAY, trace sand.
			676.5 30 - - - - - - - - 35					Boring terminated at 30 feet-bgs.

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 707

Drilling Method/Rig: HA/ Total Depth (ft.): 13

Drillers: Depth to Initial Water Level (ft-bgs): 2

Abandonment Method: Backfilled with Cuttings Drilling Date: Start: 6-11-12 End: 6-12-12

Borehole Coordinates: Field Screening Instrument:

N 464,949.0 E 2,331,410.5 Logged By: R. Lawrence

Sample	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log			Material Description
AS	S-1	12/12	0			3	FLY ASH		oist, black FLY ASH, trace grass roots.
AS	S-2	12/12							bist, black FLY ASH.
AS	S-3	12/12					7	W	et, black FLY ASH.
AS	S-4	12/12							
AS	S-5	12/12	702.0			1			
AS	S-6	12/12	5						
AS	S-8	12/12							
AS	S-9	12/12				3			
AS	S-10	12/12							
OCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12			697.0 10						
IL.GPJ (ML	W	et, dark gray SILTALLUVIAL SOILS-
SE II_R								На	and auger terminated at 13 feet-bgs.
TVA PH/			692.0						
S S S S S	EX	PLANA	TION O	F ABBF	REVIAT	IONS			REMARKS
EHOLE-PP READINGS/R SYA ALL ALC ALC TEL ALC ALC ALC TEL ALC ALC ALC ALC ALC ALC ALC ALC ALC AL	AR - Air Rotary NX - 2.1" Rock Core DTR - Dual Tube Rotary GP - Geoprobe FR - Foam Rotary HP - Hydro Punch MR - Mud Rotary SS - Split Spoon RC - Reverse Circulation ST - Shelby Tube CT - Cable Tool WS - Wash Sample						o Sample Sampler Core Core ch l e ple	e	Groundwater level was measured during drilling and may not represent stabilized levels. Borehole coordinates are approximate based upon handheld GPS and elevations are estimated by overlaying coordinates with the survey.
D DTC	- Driving - Drill Through	n Casing		Α	iGS - Al	oove Gro urface	ouna		Reviewed by: Date:

EXPLANATION OF ABBREVIATIONS

REMARKS

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 707

Drilling Method/Rig: HA/ Total Depth (ft.): 13

Drillers: Depth to Initial Water Level (ft-bgs): 3

Abandonment Method: Backfilled with Cuttings Drilling Date: Start: 6-11-12 End: 6-12-12

Borehole Coordinates: Field Screening Instrument:

N 465,117.8 E 2,331,402.3 Logged By: R. Lawrence

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	Pocket Penetrometer Reading (tsf)	Blows per 6-in	Graphic Log	USCS Designation		Material Description
AS	S-1	24/12	0				FLY ASH		oist, black FLY ASH, trace grass roots.
AS	S-2	24/12							pist, black FLY ASH.
AS	S-3	24/12	7 <u>02.</u> 0 5					W	et, black FLY ASH.
•			6 <u>97.0</u> 10				CL / ML		et, reddish brown CLAY and gray SILT -ALLUVIAL SOIL and auger terminated at 13 feet-bgs.
	FXI	ΡΙ ΔΝΔ [.]	692.0	F ARRE	PFVIΔT	IONS			REMARKS
DRILLING METHODS: SAMPLING TYPES: HSA - Hollow Stem Auger SSA - Solid Stem Auger HA - Hand Auger AR - Air Rotary DTR - Dual Tube Rotary FR - Foam Rotary HP - Hydro Punch MR - Mud Rotary RC - Reverse Circulation CT - Cable Tool WS - Wash Sample OTHER:							ampler core core h e ole	3	Groundwater level was measured during drilling and may not represent stabilized levels. Borehole coordinates are approximate based upon handheld GPS and elevations are estimated by overlaying coordinates with the survey. Reviewed by: Date:
	AS AS AS AS AS AS AS AS AS AS AS AS AS A	AS S-1 AS S-2 AS S-3 BRILLING METHODS HSA - Hollow Sten SSA - Solid Stem Hand Auger AR - Air Rotary DTR - Dual Tube F F Foam Rotary RC - Reverse Cir CT - Cable Tool JET - Jetting D - Driving D riving	AS S-1 24/12 AS S-2 24/12 AS S-3 24/12 AS S-3 24/12 DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger HA - Hand Auger AR - Air Rotary DTR - Dual Tube Rotary FR - Foam Rotary FR - Foam Rotary FR - Reverse Circulation CT - Cable Tool JET - Jetting D - Driving	AS S-1 24/12 AS S-2 24/12 AS S-3 24/12	AS S-1 24/12	AS S-2 24/12	AS S-1 24/12	AS S-1 24/12	AS S-1 24/12

EXPLANATION OF ABBREVIATIONS

REMARKS

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II

Project Location: Spring City, Tennessee **Project Number: 95618-92016**

Drilling Contractor: Total Depth Drilling Surface Elevation (ft.): 707.1

Drilling Method/Rig: HA/ Total Depth (ft.): 16

Drillers: Depth to Initial Water Level (ft-bgs): 3

Abandonment Method: Backfilled with Cuttings Drilling Date: Start: 6-11-12 End: 6-12-12

Field Screening Instrument: Borehole Coordinates:

N 465,212.4 E 2,331,136.2 Logged By: R. Lawrence

Sample	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.) 707.1 0	Pocket Penetrometer Reading (tsf)	Blows per 6-in Graphic	Log ATA Designation	M M	oist, black FLY ASH, tracoist, black FLY ASH.	Material Description	
ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12			692.1							
30CK	EX	PLANA	TION OF	ABBRE	VIATIO	NS			REMARKS	
HOLE-PP READINGS/R TAN BAH TAN	MR - Mud Rotary SS - Split Spoon RC - Reverse Circulation ST - Shelby Tube CT - Cable Tool WS - Wash Sample					Grab Sampler ick Core ick Core ick Core ibe Punch icoon Tube Sample	le	represent stabilized lev Borehole coordinates a	s measured during drilling ar vels. are approximate based upor imated by overlaying coordir	n handheld GPS
M DT	- Driving C - Drill Through	h Casing		AGS	S - Above Surfac	Ground		Reviewed by:		Date:

EXPLANATION OF ABBREVIATIONS

Client: TVA Project Name: TVA Watts Bar Fossil Plant Phase II Project Location: Spring City, Tennessee **Project Number:** 95618-92016 Blows per 6-in USCS Designation Graphic Log Sample Type Elev. Depth (ft.) Sample Number Material Description 692.1 15 FLY ASH Hand auger terminated at 16 feet-bgs. <u>687.1</u> 20 682.1 25 BOREHOLE-PP READINGS/NO ROCK TVA PHASE II_RHL.GPJ CDM_CORP.GDT 8/8/12 <u>677.1</u> 30 672.1 35

Exhibit 4 Geotechnical Calculations

Foundation Analyses

Liquefaction Potential Evaluation

Slope Stability Analyses

pg. 1 of 2

Client: TVA Job No. 92016 Calculations By: JW

Project: WBF Ash Pond Breaching Checked By/Date D.K.Neamtu/8-17-12 Date: 08-15-2012

Detail: <u>Settlement&Bearing</u> Reviewed By/Date <u>S.L.Whiteside/8-17-12</u> Calc #: <u>1</u>

Revision No./Date:

Calculation Brief Title: WBF Ash Pond Breaching - Foundation Analyses

1.0 Purpose/Objective:

This calculation package contains bearing capacity and settlement analyses for the proposed spillway structure for the Ash Pond Breaching Project at the existing Watts Bar Fossil (WBF) plant near Spring Lake, Tennessee. The analyses were performed in support of design for the new spillway structure. The objective was to confirm that the foundation soils are suitable for support of the proposed spillway.

2.0 Procedure:

In general the calculations contained herein were performed in accordance with the requirements outlined in Reference A and B (listed below in Section 3.0). Subsurface soil properties were estimated based upon geotechnical borings completed for this project (see Section 3.0 C).

- A. For inlet structures (including inlet weir, wingwalls and headwall), subsurface conditions based upon B-105. A cohesion of 1000 psf is assumed for clay layer based on the in-situ and laboratory tests performed at this layer. Calculations were performed for the 23 ft by 34 ft mat foundation (weir) and the 12-inch-wide wall footings (head wall and wingwalls).
- B. For outlet structures (including headwall and wingwalls), subsurface soil conditions based upon B-106. Calculations were performed for 14-inch-wide wall footing.
- C. Allowable bearing capacities were calculated using equation 4-1 of Reference B. Meyerhof Bearing Capacity factors were used as listed in Table 4-4 of Reference B.
- D. Elastic Settlement of sandy soils was calculated using Schmertmann Method described in section 3-3-d of Reference A. Calculations was based upon SPT N-values from borings B-105 and B-106.
- E. Consolidation Settlement of clayey soil was calculated using procedures listed in Table 3-5 of Reference A. Consolidation parameters were based on laboratory tests performed on Sample U-1 collected from the clay layer at boring B-105.

3.0 References/Data Sources:

- A. Settlement Analysis, Engineer Manual EM 1110-1-1902, by USACE, September 1990
- B. Bearing Capacity of Soils, Engineer Manual EM 1110-1-1905, by USACE, October 1992
- C. Boring Logs of B-2, B-3, B-103, B-104, B-105, B-106 performed by CDM Smith.

4.0 Assumptions and Limitations:

- A. The concrete culverts and drop box vaults of the spillway structure will be completely buried below existing grade with a depth of cover of less than 13 ft. The culverts and drop boxes are hollow concrete boxes (6 ft by 4 ft concrete culverts and 8ft by 18 ft concrete vaults) that will be filled with water during storm events. The net loading at bearing elevation for these structures is assumed to be minimal due to the reduction in in-situ stresses due to soil, including:
 - Removal of soil from the crest of the dike to reduce the crest from EL.711 to EL.701;

pg. 2 of 2

- Removal of soil from downstream slope to flatten to 3H(min):1V;
- B. Allowable bearing capacities are based upon subsurface conditions and proposed foundation characteristics (minimum of 2000 psf required). Long-term foundation settlements were calculated based upon service loading of 1000 psf. This structure will maintain normal pool and remain empty to low pool except during storm events when peak water surface EL.700 is reached.
- C. Liquefaction potential of subsurface soil was checked (under a separate calculation package) based upon soil borings B-105 and B-106, the calculation shows all subsurface soil layers have enough factor of safety against liquefaction under 2500-year design earthquake event. Thus only static settlement was considered for this project.

5.0 Calculations: Calculation sheets are attached and results are summarized in Table 1.

6.0 Conclusions/Results:

- A. Calculated bearing capacities for inlet and outlet structures are at least 2 ksf.
- B. Calculated settlements for all inlet and outlet wall footings are less than 1 inch under 2 ksf foundation loads.
- C. Calculated settlement for inlet weir structure is less than 1.5 inches under foundation load of 1000 psf.

TVA WBF Ash Pond Breaching Spring City, TN

Table 1: Summary of Settlement and Bearing Capacity Calculations

Structure	Foundation Dimensions	Subsurface Soil	Soil Parameters Used in	Bearing Capacity,	Estimated Settlement (Total/Differential), inch		
Structure	Foundation Dimensions	Type ⁽¹⁾	Calculation ^(1,2)	ksf	under design load of 2000 psf	under design load of 1000 psf	
Inlet Head Wall and Wing Walls	12-inch-wide strip	Clay	Cohesion=1000 psf	2.0	<1.0/<0.5	N/A	
Inlet Weir	23 ft by 34 ft mat	Clay	Cohesion=1000 psf; friction angle = 28 degrees	2.0	N/A	<1.5/<0.75	
Outlet Head Wall and Wing Walls	14-inch-wide strip	Silty and Clayey Sand	Friciton angle = 28 degrees	2.7	<1.0/<0.5	N/A	

Notes:

- 1. Based on boring B-105 and B-106 performed by CDM Smith.
- 2. Friction angle based on SPT N-values, cohesion based on In-situ and laborotary tests.

N/A: Not Applicable

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Proposed Spillway at Ash/Stilling Pond
DROTTOTALO	02017 0202

		1 ago oo oi = 10
COMPUTED BY / DATE	JW	08/10/12
CHECKED BY / DATE	DKN	08/17/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	-	-

Calculation Description: Bearing capacity calculation for inlet weir of the proposed new Spillway-assuming foundation soil is clay

1.0 Procedure

For bearing capacity calculations, assume that loose/soft soils, if any, at bearing depth will be overexcavated and backfilled/compacted with select material. The compacted select material will have strength properties equal or greater than those of the native underlying soils. Therefore, use the native soil strength properties for calculations.

2.0 Calculations

Ultimate Bearing Capacity Equation

$$q_u = c Nc \zeta c + 0.5 B' \gamma'_H N \gamma \zeta \gamma + \sigma'_D N q \zeta q$$

See Table 4-4 of EM 1110-2-1905 For friction angle 0°; Nq = 0 Nγ = Νφ= 1.00 Using Meyerhof: = (1+0.1*N\phi*B/W)*(1.0)*(1+.1*N\phi^0.5*D/B) $\zeta_{\gamma} = \, \zeta \gamma s^* \, \zeta \gamma i^* \, \zeta \gamma d$ $\zeta_q = \zeta q s^* \zeta q i^* \zeta q d$ = $(1+0.1*N\phi*B/W)*(1.0)*(1+.1*N\phi^0.5*D/B)$ $\zeta_c = \zeta_{cs} \times \zeta_{ci} \times \zeta_{cd}$ = $(1+0.2*N\phi*B/W)*(1.0)*(1+.2*N\phi^0.5*D/B)$ $\begin{array}{l} \zeta_{\gamma} = 1.07 \\ \zeta_{q} = 1.07 \end{array}$ $\zeta_c = 1.15$ $\sigma'_D =$ γD = 0.105 ksf $\gamma'_{\rm H} =$ 0.053 ksf

$$q_u = c Nc \zeta c + 0.5 B' \gamma'_H N \gamma \zeta \gamma + \sigma'_D Nq \zeta q$$

$$q_u = 5.904 + 0.000 + 0.113$$

$$= 6.02 \text{ ksf}$$

3.0 Results

Ultimate bearing capacity = 6.02 ksf

Use Factor of Safety = 3.00

Allowable Bearing Capacity = 2.0 ksf

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Proposed Spillway at Ash/Stilling Pond
PROJECT NO	92016 2202

	-	
COMPUTED BY / DATE	JW	08/10/12
CHECKED BY / DATE	DKN	08/17/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	-	

Calculation Description: Bearing capacity calculation for outlet walls of the proposed new Spillway

1.0 Procedure

For bearing capacity calculations, assume that loose/soft soils, if any, at bearing depth will be overexcavated and backfilled/compacted with select material. The compacted select material will have strength properties equal or greater than those of the native underlying soils. Therefore, use the native soil strength properties for calculations.

2.0 Calculations

Ultimate Bearing Capacity Equation

$$q_u = c Nc \zeta c + 0.5 B' \gamma'_H N \gamma \zeta \gamma + \sigma'_D N q \zeta q$$

For friction angle 28° ; See Table 4-4 of EM 1110-2-1905

 $\begin{array}{ll} Nq = & 14.72 \\ N\gamma = & 11.19 \\ Nc = & 25.8 \\ N\varphi = & 2.77 \end{array}$

Using Meyerhof:

 $\begin{array}{lll} \zeta_{\parallel} = \zeta \gamma s^{*} \, \zeta \gamma i^{*} \, \zeta \gamma d & = (1+0.1^{*} N \phi^{*} B/W)^{*} (1.0)^{*} (1+.1^{*} N \phi^{*} 0.5^{*} D/B) \\ \zeta_{\parallel} = \zeta q s^{*} \, \zeta q i^{*} \, \zeta q d & = (1+0.1^{*} N \phi^{*} B/W)^{*} (1.0)^{*} (1+.1^{*} N \phi^{*} 0.5^{*} D/B) \\ \zeta_{\nu} = \zeta c s^{*} \, \zeta c i^{*} \, \zeta c d & = (1+0.2^{*} N \phi^{*} B/W)^{*} (1.0)^{*} (1+.2^{*} N \phi^{*} 0.5^{*} D/B) \\ \zeta_{\nu} = 1.14 & & & & & & & & & \\ \zeta_{\nu} = 1.30 & & & & & & & & & \\ \end{array}$

 σ'_D = γD = 0.461 ksf γ'_H = 0.058 ksf

q_u = c Nc ζ c + 0.5 B' $\gamma'_H N \gamma \zeta \gamma + \sigma'_D N q \zeta q$ q_u = 0.000 + 0.431 + 7.766 = 8.20 ksf

3.0 Results

Ultimate bearing capacity = 8.20 ksf

Use Factor of Safety = 3.00

Allowable Bearing Capacity = 2.7 ksf

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Proposed Spillway at Ash/Stilling Pond
PROJECT NO	92016 2202

		. ago oo o. <u>-</u> . o
COMPUTED BY / DATE	JW	08/10/12
CHECKED BY / DATE	DKN	08/17/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	-	-

Calculation Description: Bearing capacity calculation for inlet walls of the proposed new Spillway

1.0 Procedure

For bearing capacity calculations, assume that loose/soft soils, if any, at bearing depth will be overexcavated and backfilled/compacted with select material. The compacted select material will have strength properties equal or greater than those of the native underlying soils. Therefore, use the native soil strength properties for calculations.

2.0 Calculations

Ultimate Bearing Capacity Equation

$$q_u = c Nc \zeta c + 0.5 B' \gamma'_H N \gamma \zeta \gamma + \sigma'_D N q \zeta q$$

For friction angle 0° ; See Table 4-4 of EM 1110-2-1905

Nq = 1 $N\gamma = 0$ Nc = 5.14 $N\phi = 1.00$

Using Meyerhof:

$$\begin{array}{lll} \zeta_{7} = \zeta_{9}s^{+}\zeta_{7}i^{+}\zeta_{7}d & = (1+0.1*N\phi^{+}B/W)^{*}(1.0)^{*}(1+.1*N\phi^{+}0.5*D/B) \\ \zeta_{8} = \zeta_{9}s^{+}\zeta_{9}i^{+}\zeta_{7}d & = (1+0.1*N\phi^{+}B/W)^{*}(1.0)^{*}(1+.1*N\phi^{+}0.5*D/B) \\ \zeta_{7} = \zeta_{7}s^{+}\zeta_{7}i^{+}\zeta_{7}d & = (1+0.2*N\phi^{+}B/W)^{*}(1.0)^{*}(1+.2*N\phi^{+}0.5*D/B) \\ \zeta_{7} = 1.09 \\ \zeta_{8} = 1.09 \\ \zeta_{7} = 1.18 & \\ \\ \sigma_{D}' = \gamma_{D} = 0.421 \quad ksf \\ \gamma_{H}' = 0.053 \quad ksf \\ \end{array}$$

$$q_u = c Nc \zeta c + 0.5 B' \gamma'_H N \gamma \zeta \gamma + \sigma'_D N q \zeta q$$

$$q_u = 6.082 + 0.000 + 0.459$$

$$= 6.54 \text{ ksf}$$

3.0 Results

Ultimate bearing capacity = 6.54 ksf

Use Factor of Safety = 3.00

Allowable Bearing Capacity = 2.2 ksf

CLIENT	TVA
PROJECT	Watts Bar Ash Pond
DETAIL	Proposed Spillway at Ash/Stilling Pond
PROJECT NO	92016 2202

		. ago oo o. <u>-</u> . o
COMPUTED BY / DATE	JW	08/10/12
CHECKED BY / DATE	DKN	08/17/12
REVISION NO. / DATE	-	-
REVIEWED BY / DATE	-	-

Calculation Description: Bearing capacity calculation for inlet weir of the proposed new Spillway-assuming foundation soil is sand

1.0 Procedure

For bearing capacity calculations, assume that loose/soft soils, if any, at bearing depth will be overexcavated and backfilled/compacted with select material. The compacted select material will have strength properties equal or greater than those of the native underlying soils. Therefore, use the native soil strength properties for calculations.

2.0 Calculations

Ultimate Bearing Capacity Equation

$$q_u = c Nc \zeta c + 0.5 B' \gamma'_H N \gamma \zeta \gamma + \sigma'_D N q \zeta q$$

For friction angle 28°; See Table 4-4 of EM 1110-2-1905

 $\begin{array}{ll} Nq = & 14.72 \\ N\gamma = & 11.19 \\ Nc = & 25.8 \\ N\phi = & 2.77 \end{array}$

 $\gamma'_H =$

For large footing where B > 6 ft apply reduction factor r_{γ} (page 4-14 EM 1110-1-1905, October 30, 1992).

$$\begin{split} r_{\gamma} &= 1 - 0.25 \times log_{10} \ (B/6) \\ &= 1 - 0.25 \times log_{10} \ (23/6) \\ &= 0.85 \end{split}$$

0.058

Using Meyerhof:

 $\begin{array}{lll} \zeta_{\gamma} = \zeta y s^{*} \zeta \gamma i^{*} \zeta \gamma d & = (1+0.1^{*}N \phi^{*}B/W)^{*}(1.0)^{*}(1+.1^{*}N \phi^{*}0.5^{*}D/B) \\ \zeta_{i} = \zeta q s^{*} \zeta q i^{*} \zeta q i & = (1+0.1^{*}N \phi^{*}B/W)^{*}(1.0)^{*}(1+.1^{*}N \phi^{*}0.5^{*}D/B) \\ \zeta_{i} = \zeta c s^{*} \zeta c i^{*} \zeta c d & = (1+0.2^{*}N \phi^{*}B/W)^{*}(1.0)^{*}(1+.2^{*}N \phi^{*}0.5^{*}D/B) \\ \zeta_{\gamma} = 1.20 \\ \zeta_{i} = 1.20 \\ \zeta_{i} = 1.40 \\ \\ \sigma'_{D} = \gamma D = 0.115 \quad ksf \\ \end{array}$

ksf

$$\mathbf{q_u} = \mathbf{c} \ \mathbf{Nc} \ \zeta \mathbf{c} + \mathbf{0.5} \ \mathbf{B'} \ \mathbf{\gamma'_H} \ \mathbf{N\gamma} \ \zeta \mathbf{\gamma} + \mathbf{\sigma'_D} \ \mathbf{Nq} \ \zeta \mathbf{q}$$

$$\mathbf{q_u} = 0.000 + 7.554 + 2.033$$

$$= 9.59 \text{ ksf}$$

3.0 Results

Ultimate bearing capacity = 9.59 ksf

Use Factor of Safety = 3.00

Allowable Bearing Capacity = 3.2 ksf

CLIENT TVA
PROJECT Watts Bar Ash Pond
DETAIL Settlement Calculation

JOB NO. <u>92016.2202</u> DATE CHECKED <u>DKN</u> CHECKED BY 8/17/2012 COMPUTED BY <u>IW</u>
DATE <u>8/10/2012</u>
PAGE NO. 1 of 8

Purpose: To estimate the total settlement of the wall footing at the inlet area.

Objective: Calculate the settlement caused by foundation load.

Reference: 1. Schmertmann, John, "Static Cone To Compare Static Settlement Over Sands", Journal of the Soil Mechanics and Foundations Division, ASCE, May 1970.

- 2. Schmertmann, John; Hartman, John Paul; Brown, Philip, "Improved Strain Influence Factor Diagrams", Journal of the Soil Mechanics and Foundations Division, ASCE, August 1978.
- 3. USACE, "Engineering Design Settlement Analysis", EM 1110-1-1904, September 30, 1990.
- 4. NAVFAC, "Soil Mechanics", Design Manual 7.1.

Soil Information: B-105 and B-106 performed by CDM Smith.

Assumptions: 1. Triangular strain factor distribution within subsurface soils, i.e. strain = 0 at incompressible boundary.

- 2. All split spoon sampling was carried out in accordance with ASTM D1556.
- 3. Loading occurs instantaneously.
- 4. Clay is over consolidated; assuming same overconsolidation margin for same clay layers.
- 5. Only one-dimensional consolidation is considered.
- 6. Assuming same initial void ratio for same clay layers.
- 7. The foundation is rigid.

1.0: Boring Information

	B-105	
Depth	Layer Description	SPT N-Value
0		
1	CL	
2	CL	
3	CL	
4	CL	
13	SC	3
18	SC	3
23	SC	3
28	SW	35

Layer	Design N Values	
Thickness, ft	Mid Layer Depth	N Value
1	0.5	CLAY
1	1.5	CLAY
1	2.5	CLAY
1	3.5	CLAY
9	8.5	3
5	15.5	3
5	20.5	3
5	25.5	35

JOB NO. <u>92016.2202</u>

CHECKED BY 8/17/2012

DATE CHECKED DKN

Note:

All depths are in feet below foundation subgrade.

CLIENT <u>TVA</u> PROJECT <u>Watts Bar Ash Pond</u>

DETAIL Settlement Calculation

JOB NO. 92016.2202

DATE CHECKED DKN

CHECKED BY 8/17/2012

COMPUTED BY <u>IW</u>
DATE <u>8/10/2012</u>
PAGE NO. <u>3 of 8</u>

2.0: Foundation Information and Elastic Settlement Strain Influence Depth

Soil Type:	Silty Sand	
Depth of Water Table (d) ft.	0	Assumed GW
Depth of Foundation (D) ft.	8	
Length of Foundation (L) ft.	10	
Width of Foundation (B) ft.	1.0	
L/B	10.00	
Z/B	4.00	
Iz	0.20	
Compressible Layer Thickness (H) ft.	28	
Depth of Influence based on Strain Condition ft.	4	
Depth of Influence Used for Calculations ft.	4	
$\sigma'_{ m Izp}$	53	psf
Max Izp depth:	1.00	H/4
Existing overburden pressure (tsf)	0.23	(At Foundation Level)
Additional Loading (tsf)	0.77	(Based on Additional Load @ Foundation Level)
Effective overburden pressure at Izp(tsf)	0.03	tsf
Izp =	1.04	
Foundation Load	2,000	psf

3.1: Strain Influence Factors used in Elastic Settlement Calculation

Strain		
slope =	0.8409	
slope =	0.3470	

Increments	Depth (ft.)	Strain Influence	
1	0.50		
2	1.50		Sandy soil
3	2.50		outside of
4	3.50		Schmertmann
5	0.00		influence depth,
6	0.00		not elastic
7	0.00		settlement
8	0.00		

3.2: Strain Influence Factors used in Elastic Settlement Calculation - Continue

Soil Type:		
Soil	q _c /N	Descrpition
Silt	2	Combination of silts, sandy silts, slightly cohesive sand-silts.
Silty Sand	2.75	Silty sands
Sand	3.5	Clean to slightly silty sands.

Where: q_c = Average Dutch Cone Resistance N = SPT N value

JOB NO. <u>92016.2202</u>

CHECKED BY 8/17/2012

DATE CHECKED DKN

Strain Condition:			
Strain	Es/qc	Descrpition	
Axisymmetric	2.5	L/B = 1	
Plane	3.5	L/B > 10	

CLIENT <u>TVA</u>
PROJECT <u>Watts Bar Ash Pond</u>
DETAIL <u>Settlement Calculation</u>

JOB NO. <u>92016.2202</u> DATE CHECKED <u>DKN</u>

CHECKED BY <u>8/17/2012</u>

COMPUTED BY <u>IW</u>

DATE <u>8/10/2012</u>

PAGE NO. <u>6 of 8</u>

4.1: Boussinesq Stresses used in Consolidation Settlement Calculation

Load Dimensions:

Length(ft)	10	
Width(ft)	1	

b (ft) 5 a (ft) 1

Net Pressure Increase:

1539.2 psf

Center Stress Calculation

EM 1110-1-1904, table C-1; Superposition

Layer center depth	A^2	B^2	С	Influence factor I	Boussinesq Stress Δσ'0	Initial soil stress o' ₀	Final Stress	Δσ '₀/σ ' ₀
1	1.25	26	5.12	0.55	845.73	489.6	1335.3	1.7
3	9.25	34	5.85	0.20	311.29	547.2	858.5	0.6
5	25.25	50	7.09	0.11	171.99	604.8	776.8	0.3
7	49.25	74	8.62	0.07	107.89	662.4	770.3	0.2
9	81.25	106	10.31	0.05	72.90	748.8	821.7	0.1
11	121.25	146	12.09	0.03	52.05	864	916.1	0.1
13	169.25	194	13.94	0.03	38.80	979.2	1018.0	0.0
15	225.25	250	15.82	0.02	29.93	1094.4	1124.3	0.0
17	289.25	314	17.73	0.02	23.73	1209.6	1233.3	0.0
19	361.25	386	19.65	0.01	19.25	1324.8	1344.1	0.0
21	441.25	466	21.59	0.01	15.91	1440	1455.9	0.0
23	529.25	554	23.54	0.01	13.37	1555.2	1568.6	0.0
25	625.25	650	25.50	0.01	11.38	1670.4	1681.8	0.0
27	729.25	754	27.46	0.01	9.80	1785.6	1795.4	0.0
29	841.25	866	29.43	0.01	8.53	1900.8	1909.3	0.0
31	961.25	986	31.40	0.00	7.48	2016	2023.5	0.0

CLIENT TVA PROJECT Watts Bar Ash Pond DETAIL Settlement Calculation

JOB NO. 92016.2202 DATE CHECKED DKN CHECKED BY 8/17/2012 OMPUTED BY JW DATE 8/10/2012 PAGE NO. 7 of 8

4.2: Consolidation Settlment Calculation

Foundation depth(ft) 8 Soil Stress at Foundation Depth(psf): 460.8

Soil unit weight below depth of foundation(psf): 120

Foundation contact pressure(psf) 2,000

Overconsolidation margin(psf) 1960

Initial Void Ratio eo: 0.65 **Compression Index Cc:** 0.1386

ReCompression Index Cr: 0.01485

Stress Increase at Foundation Depth(psf): 1539.2

> G.W. Depth from Foundation(ft) 0

depth from foundation bottom(ft)	Layer center depth, from Foundation Bottom, ft	Initial σ^{\prime}_{0}	Preconsolidatio n Stress σ_p'	Final σ' _f	Strain ε	Settlement in Sublayer(ft)
0						
1	0.5	489.6	2449.6	1335	0.006	0.00392
2	1.5	547.2	2507.2	858	0.003	0.00176
3	2.5	604.8	2564.8	777	0.002	0.00098
4	3.5	662.4	2622.4	770	0.001	0.00059
6	5	748.8	2708.8	822	0.001	
8	7	864	2824	916	0.000	
10	9	979.2	2939.2	1018	0.000	
12	11	1094.4	3054.4	1124	0.000	
14	13	1209.6	3169.6	1233	0.000	
16	15	1324.8	3284.8	1344	0.000	Sandy soil, no consolidation settlement
18	17	1440	3400	1456	0.000	Sandy son, no consolidation settlement
20	19	1555.2	3515.2	1569	0.000	
22	21	1670.4	3630.4	1682	0.000	
24	23	1785.6	3745.6	1795	0.000	
26	25	1900.8	3860.8	1909	0.000	
28	27	2016	3976	2023	0.000	

0.0073 Consolidation Settlement: ft

CLIENT <u>TVA</u>
PROJECT <u>Watts Bar Ash Pond</u>
DETAIL <u>Settlement Calculation</u>

JOB NO. <u>92016.2202</u>
DATE CHECKED <u>DKN</u>
CHECKED BY <u>8/17/2012</u>

COMPUTED BY <u>IW</u>

DATE <u>8/10/2012</u>

PAGE NO. <u>8 of 8</u>

5: Elastic and Total Settlment Calculation

Layer	Delta Z	Avg. SPT	Corrected qc (tsf) (2)	Es (tsf) (3)	Depth to Mid Layer	Iz ⁽⁴⁾	(Iz/Es)*Delta Z) (5)
1	1	CLAY			0.50		
2	1	CLAY			1.50		
3	1	CLAY			2.50		
4	1	CLAY			3.50		
5	9	3					
6	5	3	Sandy soil outside of Schmertmann influence depth, no elastic settlement				
7	5	3					
8	5	35					
	28		Total Elastic Settlement/tsf 0.0000 ft,				

Settlements:

Elastic Settlement

t = 1 years $e = 0.00 Inches$ (C	2=1.2)
------------------------------------	--------

Elastic Settlement: = 0.00 Inches

Consolidation Settlement: = 0.09 Inches

Total Settlement: = 0.09 Inches

Notes:

- 1 Refer to SPT vs. Depth for average N values (not corrected).
- **2** Refer to reference page for values.
- ${\bf 3} \ \ Schmertmann \ SPT-correlations \ modified \ by \ Ladd, \ E_s = average \ equivalent \ modulus \ over \ depth \ z \ for \ foundation \ type.$
- 4 Iz obtained from strain influence spreadsheet.
- 5 Represents the settlement attributed to each layer assuming C₁ equals to 1.

CLIENT TVA
PROJECT Watts Bar Ash Pond
DETAIL Settlement Calculation

JOB NO. <u>92016.2202</u> DATE CHECKED <u>DKN</u> CHECKED BY 8/17/2012 COMPUTED BY <u>IW</u>
DATE <u>8/15/2012</u>
PAGE NO. <u>1 of 6</u>

Purpose: To estimate the total settlement of the wall footing at outlet area.

Objective: Calculate the settlement caused by foundation load.

Reference: 1. Schmertmann, John, "Static Cone To Compare Static Settlement Over Sands", Journal of the Soil Mechanics and Foundations Division, ASCE, May 1970.

2. Schmertmann, John; Hartman, John Paul; Brown, Philip, "Improved Strain Influence Factor Diagrams", Journal of the Soil Mechanics and Foundations Division, ASCE, August 1978.

3. USACE, "Engineering Design - Settlement Analysis", EM 1110-1-1904, September 30, 1990.

4. NAVFAC, "Soil Mechanics", Design Manual 7.1.

Soil Information: B-105 and B-106 performed by CDM Smith.

Assumptions: 1. Triangular strain factor distribution within subsurface soils, i.e. strain = 0 at incompressible boundary.

- 2. All split spoon sampling was carried out in accordance with ASTM D1556.
- 3. Loading occurs instantaneously.

1.0: Boring Information

To estimate the total settlement of the wall footing at outlet area.

To estimate the total settlement of the			
	B-105		
Depth	Layer Description	SPT N-Value	
0			
2	SM	4	
4	SC	4	
5	SC	4	

Layer	Design N Values		
Thickness, ft	Mid Layer Depth	N Value	
2 2 1	1.0 3.0 4.5	4 4 4	

JOB NO. <u>92016.2202</u>

CHECKED BY <u>8/17/2012</u>

DATE CHECKED DKN

Note:

All depths are in feet below foundation subgrade.

CLIENT TVA
PROJECT Watts Bar Ash Pond
DETAIL Settlement Calculation

JOB NO. 92016.2202 DATE CHECKED DKN CHECKED BY 8/17/2012 COMPUTED BY <u>IW</u>
DATE <u>8/10/2012</u>
PAGE NO. <u>3 of 6</u>

2.0: Foundation Information and Elastic Settlement Strain Influence Depth

To estimate the total settlement of the Soil Type:	Silty Sand	
Depth of Water Table (d) ft.	0	Assumed GW
Depth of Foundation (D) ft.	8	
Length of Foundation (L) ft.	11.670	
Width of Foundation (B) ft.	1.167	
L/B	10.00	
Z/B	4.00	
Iz	0.20	
Compressible Layer Thickness (H) ft.	14.5	
Depth of Influence based on Strain Condition ft.	5	
Depth of Influence Used for Calculations ft.	5	
$\sigma'_{ m Izp}$	61	psf
Max Izp depth:	1.17	H/4
Existing overburden pressure (tsf)	0.23	(At Foundation Level)
Additional Loading (tsf)	0.77	(Based on Additional Load @ Foundation Level)
Effective overburden pressure at Izp(tsf)	0.03	tsf
Izp =	1.00	
Foundation Load	2,000	psf

3.1: Strain Influence Factors used in Elastic Settlement Calculation

To estimate the total settlement of the wall footing at outlet area.

Strain				
slope =	0.6862			
slope =	0.2858			

Increments	Depth (ft.)	Strain
merements	Deput (it.)	Influence
1	1.00	0.89
2	3.00	0.48
3	4.50	0.05

3.2: Strain Influence Factors used in Elastic Settlement Calculation - Continue

To estimate the total settlement of the wall footing at outlet area.

	Soil Type:			
Soil	q _c /N	Descrpition		
Silt	2	Combination of silts, sandy silts, slightly cohesive sand-silts.		
Silty Sand	2.75	Silty sands		
Sand	3.5	Clean to slightly silty sands.		

Where:

q_c = Average Dutch Cone Resistance

N = SPT N value

Strain Condition:				
Strain Es/qc Descrpition				
Axisymmetric	2.5	L/B = 1		
Plane	3.5	L/B > 10		

CLIENT TVA

PROJECT Watts Bar Ash Pond DETAIL Settlement Calculation

JOB NO. 92016.2202 DATE CHECKED DKN

CHECKED BY 8/17/2012

COMPUTED BY JW DATE <u>8/10/2012</u>

PAGE NO. 6 of 6

5: Elastic and Total Settlment Calculation

To estimate the total settlement of the wall footing at outlet area.

Layer	Delta Z	Avg. SPT	Corrected qc (tsf) (2)	Es (tsf) (3)	Depth to Mid Layer	Iz ⁽⁴⁾	(Iz/Es)*Delta Z) (5)
1	2	4	11.00	38.5	1.00	0.89	0.0460
2	2	4	11.00	38.5	3.00	0.48	0.0248
3	1	4	11.00	38.5	4.50	0.05	0.0012

5

Total Elastic Settlement/tsf

0.0720

ft/tsf

Settlements:

Elastic Settlement

0.80 Inches t = 1 years (C2=1.2)

Elastic Settlement: 0.80 **Inches** 0.00 Consolidation Settlement: Inches

> **Total Settlement: Inches** 0.80

Notes:

- 1 Refer to SPT vs. Depth for average N values (not corrected).
- 2 Refer to reference page for values.
- 3 Schmertmann SPT-correlations modified by Ladd, E_s = average equivalent modulus over depth z for foundation type.
- 4 Iz obtained from strain influence spreadsheet.
- 5 Represents the settlement attributed to each layer assuming C_1 equals to 1.

JOB NO. <u>92016.2202</u>
DATE CHECKED <u>DKN</u>
CHECKED BY <u>8/17/2012</u>

COMPUTED BY IW
DATE 8/10/2012
PAGE NO. 1 of 8

Purpose: To estimate the total settlement of the inlet weir structure under foundation load of 1000 psf.

Objective: Calculate the settlement caused by foundation load.

Reference: 1. Schmertmann, John, "Static Cone To Compare Static Settlement Over Sands", Journal of the Soil Mechanics and Foundations Division, ASCE, May 1970.

- 2. Schmertmann, John; Hartman, John Paul; Brown, Philip, "Improved Strain Influence Factor Diagrams", Journal of the Soil Mechanics and Foundations Division, ASCE, August 1978.
- 3. USACE, "Engineering Design Settlement Analysis", EM 1110-1-1904, September 30, 1990.
- 4. NAVFAC, "Soil Mechanics", Design Manual 7.1.

Soil Information: B-105 and B-106 performed by CDM Smith.

Assumptions: 1. Triangular strain factor distribution within subsurface soils, i.e. strain = 0 at incompressible boundary.

- 2. All split spoon sampling was carried out in accordance with ASTM D1556.
- 3. Loading occurs instantaneously.
- 4. Clay is over consolidated; assuming same overconsolidation margin for same clay layers.
- 5. Only one-dimensional consolidation is considered.
- 6. Assuming same initial void ratio for same clay layers.
- 7. The foundation is rigid.

1.0: Boring Information

	B-105		
Depth	Layer Description	SPT N-Value	
0			
2	CL		
4	CL		
6	CL		
8	CL		
13	SC	3	
18	SC	3	
23	SC	3 35	
28	SW	35	

Layer	Design N Values		
Thickness, ft	Mid Layer Depth	N Value	
2	1.0	CLAY	
2	3.0	CLAY	
2	5.0	CLAY	
2	7.0	CLAY	
5	10.5	3	
5	15.5	3	
5	20.5	3	
5	25.5	35	

JOB NO. <u>92016.2202</u>

CHECKED BY <u>8/17/2012</u>

DATE CHECKED DKN

Note:

All depths are in feet below foundation subgrade.

CLIENT <u>TVA</u>
PROJECT <u>Watts Bar Ash Pond</u>

DETAIL Settlement Calculation

JOB NO. 92016.2202 DATE CHECKED DKN CHECKED BY 8/17/2012 COMPUTED BY \underline{IW} DATE $\underline{8/10/2012}$ PAGE NO. $\underline{3 \text{ of } 8}$

2.0: Foundation Information and Elastic Settlement Strain Influence Depth

Soil Type:	Silty Sand	
Depth of Water Table (d) ft.	15.5	based on boring B-105
Depth of Foundation (D) ft.	6.5	, and the second
Length of Foundation (L) ft.	34	
Width of Foundation (B) ft.	23.0	
L/B	1.48	
Z/B	2.11	
Iz	0.11	
Compressible Layer Thickness (H) ft.	30	
Depth of Influence based on Strain Condition ft.	48	
Depth of Influence Used for Calculations ft.	30	
$\sigma'_{ m Izp}$	900	psf
Max Izp depth:	7.50	H/4
Existing overburden pressure (tsf)	0.39	(At Foundation Level)
Additional Loading (tsf)	0.11	(Based on Additional Load @ Foundation Level)
Effective overburden pressure at Izp(tsf)	0.45	tsf
Izp =	0.55	
Foundation Load	1,000	psf

3.1: Strain Influence Factors used in Elastic Settlement Calculation

Strain			
slope =	0.0592		
slope =	0.0244		

Increments	Depth (ft.)	Strain Influence
1	1.00	0.16
2	3.00	0.28
3	5.00	0.40
4	7.00	0.52
5	10.50	0.48
6	15.50	0.35
7	20.50	0.23
8	25.50	0.11

COMPUTED BY <u>IW</u>

DATE <u>8/10/2012</u>

PAGE NO. <u>5 of 8</u>

3.2: Strain Influence Factors used in Elastic Settlement Calculation - Continue

Soil Type:				
Soil	q c/N	Descrpition		
Silt	2	Combination of silts, sandy silts, slightly cohesive sand-silts.		
Silty Sand	2.75	Silty sands		
Sand	3.5	Clean to slightly silty sands.		

Where: q_c = Average Dutch Cone Resistance N = SPT N value

JOB NO. <u>92016.2202</u>

CHECKED BY <u>8/17/2012</u>

DATE CHECKED DKN

Strain Condition:			
Strain Es/qc Descrpition			
Axisymmetric	2.5	L/B = 1	
Plane	3.5	L/B > 10	

CLIENT <u>TVA</u>
PROJECT <u>Watts Bar Ash Pond</u>
DETAIL <u>Settlement Calculation</u>

JOB NO. <u>92016.2202</u>

DATE CHECKED <u>DKN</u>

CHECKED BY <u>8/17/2012</u>

COMPUTED BY <u>IW</u>

DATE <u>8/10/2012</u>

PAGE NO. <u>6 of 8</u>

4.1: Boussinesq Stresses used in Consolidation Settlement Calculation

Load Dimensions:

Length(ft)	34
Width(ft)	23

b (ft) 17 a (ft) 12

Net Pressure Increase:

220 psf

Center Stress Calculation

EM 1110-1-1904, table C-1; Superposition

Layer center depth	A^2	B^2	С	Influence factor I	Boussinesq Stress Δσ'0	Initial soil stress σ' ₀	Final Stress	Δσ '₀/σ' ₀
1	133.25	290	20.55	1.00	219.93	900	1119.9	0.2
3	141.25	298	20.74	0.99	218.17	1140	1358.2	0.2
5	157.25	314	21.12	0.97	212.48	1380	1592.5	0.2
7	181.25	338	21.69	0.92	202.45	1620	1822.4	0.1
9	213.25	370	22.41	0.86	189.10	1860	2049.1	0.1
11	253.25	410	23.29	0.79	173.92	1975.2	2149.1	0.1
13	301.25	458	24.30	0.72	158.25	2090.4	2248.7	0.1
15	357.25	514	25.42	0.65	143.01	2205.6	2348.6	0.1
17	421.25	578	26.65	0.59	128.74	2320.8	2449.5	0.1
19	493.25	650	27.97	0.53	115.70	2436	2551.7	0.0
21	573.25	730	29.36	0.47	103.98	2551.2	2655.2	0.0
23	661.25	818	30.83	0.43	93.55	2666.4	2760.0	0.0
25	757.25	914	32.35	0.38	84.32	2781.6	2865.9	0.0
27	861.25	1018	33.92	0.35	76.18	2896.8	2973.0	0.0
29	973.25	1130	35.53	0.31	69.01	3012	3081.0	0.0
31	1093.25	1250	37.18	0.28	62.68	3127.2	3189.9	0.0

CLIENT TVA
PROJECT Watts Bar Ash Pond
DETAIL Settlement Calculation

JOB NO. 92016.2202

DATE CHECKED DKN

CHECKED BY 8/17/2012

DATE <u>8/10/2012</u>
PAGE NO. <u>7 of 8</u>

4.2: Consolidation Settlment Calculation

Foundation depth(ft) 6.5
Soil Stress at Foundation Depth(psf): 780

Soil unit weight below depth of foundation(psf): 120
Foundation contact pressure(psf) 1,000

Overconsolidation margin(psf) 1960 Initial Void Ratio eo: 0.65 Compression Index Cc: 0.1386
ReCompression Index Cr: 0.01485

Stress Increase at Foundation Depth(psf):

220

G.W. Depth from Foundation(ft)

) 9

depth from foundation bottom(ft)	Layer center depth, from Foundation Bottom, ft	Initial $\sigma^{!}_{0}$	Preconsolidatio n Stress σ'_p	Final $\sigma_{\mathrm{f}}^{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Strain ε	Settlement in Sublayer(ft)
0						
2	1	900	2860	1120	0.001	0.00171
4	3	1140	3100	1358	0.001	0.00137
6	5	1380	3340	1592	0.001	0.00112
8	7	1620	3580	1822	0.001	0.00092
10	9	1860	3820	2049	0.001	
12	11	1975.2	3935.2	2149	0.001	
14	13	2090.4	4050.4	2249	0.000	
16	15	2205.6	4165.6	2349	0.000	
18	17	2320.8	4280.8	2450	0.000	
20	19	2436	4396	2552	0.000	
22	21	2551.2	4511.2	2655	0.000	
24	23	2666.4	4626.4	2760	0.000	
26	25	2781.6	4741.6	2866	0.000	
28	27	2896.8	4856.8	2973	0.000	
30	29	3012	4972	3081	0.000	
32	31	3127.2	5087.2	3190	0.000	

Consolidation Settlement: 0.0051 ft

CLIENT <u>TVA</u>
PROJECT <u>Watts Bar Ash Pond</u>
DETAIL <u>Settlement Calculation</u>

JOB NO. <u>92016.2202</u>
DATE CHECKED <u>DKN</u>
CHECKED BY <u>8/17/2012</u>

COMPUTED BY <u>IW</u>

DATE <u>8/10/2012</u>

PAGE NO. <u>8 of 8</u>

5: Elastic and Total Settlment Calculation

Layer	Delta Z	Avg. SPT	Corrected qc (tsf) (2)	Es (tsf) (3)	Depth to Mid Layer	Iz ⁽⁴⁾	(Iz/Es)*Delta Z)
1	2	CLAY			1.00		
2	2	CLAY			3.00		
3	2	CLAY			5.00		
4	2	CLAY			7.00		
5	5	3	8.25	21.1	10.50	0.48	0.1130
6	5	3	8.25	21.1	15.50	0.35	0.0841
7	5	3	8.25	21.1	20.50	0.23	0.0551
8	5	35	122.50	312.8	25.50	0.11	0.0018

28 Total Elastic Settlement/tsf 0.2539 ft/tsf

Settlements:

Elastic Settlement

t = 1 years	e =	0.40 Inches	(C2=1.2)
Elastic Settlement:	=	<u>0.40</u> Inches	
Consolidation Settlement:	=	<u>0.06</u> Inches	
Total Settlement:	=	<u>0.46</u> Inches	

Notes:

- 1 Refer to SPT vs. Depth for average N values (not corrected).
- 2 Refer to reference page for values.
- 3 Schmertmann SPT-correlations modified by Ladd, E_s = average equivalent modulus over depth z for foundation type.
- 4 Iz obtained from strain influence spreadsheet.
- 5 Represents the settlement attributed to each layer assuming C₁ equals to 1.

pg. <u>1</u> of <u>1</u>

Client: TVA Job No. 92016 Calculations By: <u>I W</u>

Project: WBF Ash Pond Breaching Checked By/Date D.K.Neamtu/8-15-12 Date: 08/15/2012

Detail: <u>Liquefaction Analyses</u> Reviewed By/Date <u>S.L.Whiteside/8-16-12</u> Calc #: 1

Revision No./Date: _____

Calculation Brief Title: TVA WBF Ash Pond Breaching Project - Liquefaction Potential Evaluation

1.0 Purpose/Objective:

The purpose of this calculation is to estimate the Factor of Safety against soil liquefaction or softening under the design earthquake event. This evaluation is based upon the SPT N-values from two geotechnical borings performed by CDM Smith along the proposed new spillway. The objective is to determine post-earthquake strength of soils layers to be used for seismic slope stability analyses (under a separate calculation package).

2.0 Procedure:

This calculation was performed in general accordance with the methods given in Reference D (listed below). Section 1.4.2.2 outlines the methodologies for determining factors of safety against classic liquefaction (Youd et al., 2001) and cyclic softening (Idriss and Boulanger, 2008). This reference defines Category 1 soils as those susceptible to classical liquefaction, classified sands or gravels or silts/clays with PI less than 7. Category 2 soils are those susceptible to cyclic softening, classified as silts and clays with PI greater than 7. The subsurface profile contains at least two layers (fill and native clay/silt) that are considered Category 2 soils. However, all layers were evaluated based upon classical liquefaction because this approach tends to produce more-conservative results for Category 2 soils when SPT N-values are less than 10. All the Fill and Silt soil encountered in B-105 and B-106 with N-values above 10 are located within the excavated zone and will be replaced with compacted engineered fill during construction.

3.0 References/Data Sources:

- A. Youd et al. (2001). "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, October 2001, page 817-833.
- B. Design Earthquake magnitude from USGS deaggregation data. (Attached as page 3 of the calculation)
- C. Design peak ground acceleration from "Report Existing Conditions Stability Analyses, Ash Pond Area at Watts Bar Fossil Pant", by CDM Smith, January 31, 2012.
- D. "TVA Coal Combustion Products Management Program Master Programmatic Document (revision 1.0)", by URS, December 7, 2009
- E. "Department of Defense Handbook: Soil Dynamic and Special Design Aspects", November 15, 1997.

4.0 Assumptions and Limitations:

A. All soils evaluated are susceptible only to classical liquefaction and can be classified as Category 1 material defined in Reference D.

5.0 Calculations: Attached on next 4 pages.

6.0 Conclusions/Results:

A. All soils evaluated have a factor of safety against liquefaction above 1.4. Therefore, based on the Reference D, the seismic slope stability analyses can consider the full static drained strength for granular soils and full undrained strength for clayey soils.

IOB NO: 9012-83529 DATE CHK: 8/15/2012 CHECK BY: D.K.Neamtu

PROJECT: WBF Ash Pond Breaching Project DETAIL: Liquefaction Potential Analyses

COMP BY: J. Wen DATE: 8/15/2012 Page 113 of 219 PAGE NO: 1 of 4

TVA WBF Ash Pond Breaching Project Spring City, TN

Liquefaction Potential Evaluation at B-105

Design Earthquake Magnitude (M_{design}) = 5.83 (from USGS deaggregation data, see page 4)

Magnitude Scaling Factor (MSF) = 1.9 (MSF = $10^{2.24}/M_w^{2.56}$)

Boring	Depth, ft	Depth, meters	Sample #	Soil Type	N value	A _{max} , g	Depth to GWT	Pa	C _r	C _N	r _d	Total Stress, psf	Effective Stress, psf	CSR	Fines content	(N ₁) ₆₀	(N ₁) _{60cs}	CRR _{7.5}	Factor of Safety for M _{7.5}	Factor of Safety for M _{design}
B-105	1	0.30	1	FILL	21	0.13	29.2	2089	0.75	1.70	1.00	115	115	0.08	80	26.8	37.1	non-liquefiable	Non-Liquefiable	Non-Liquefiable
B-105	3	0.91	2	FILL	17	0.13	29.2	2089	0.75	1.70	0.99	345	345	0.08	80	21.7	31.0	non-liquefiable	Non-Liquefiable	Non-Liquefiable
B-105	5	1.52	3	FILL	15	0.13	29.2	2089	0.75	1.70	0.99	575	575	0.08	82	19.1	28.0	0.37	4.40	8.39
B-105	7	2.13	4	FILL	16	0.13	29.2	2089	0.75	1.61	0.98	805	805	0.08	80	19.3	28.2	0.38	4.53	8.63
B-105	9	2.74	5	FILL	14	0.13	29.2	2089	0.75	1.42	0.98	1035	1035	0.08	80	14.9	22.9	0.26	3.09	5.88
B-105	11	3.35	6	FILL	14	0.13	29.2	2089	0.80	1.29	0.97	1265	1265	0.08	80	14.4	22.3	0.25	2.99	5.69
B-105	13	3.96	7	FILL	15	0.13	29.2	2089	0.80	1.18	0.97	1495	1495	0.08	80	14.2	22.0	0.24	2.96	5.63
B-105	15	4.57	8	CL	10	0.13	29.2	2089	0.85	1.10	0.97	1725	1725	0.08	80	9.4	16.2	0.17	2.12	4.03
B-105	19	5.79	9	CL	8	0.13	29.2	2090	0.85	0.98	0.96	2185	2185	0.08	80	6.7	13.0	0.14	1.74	3.31
B-105	21	6.40	10	CL	8	0.13	29.2	2091	0.95	0.93	0.95	2415	2415	0.08	80	7.1	13.5	0.15	1.81	3.44
B-105	24	7.32	11	CL	6	0.13	29.2	2092	0.95	0.87	0.94	2760	2760	0.08	80	5.0	11.0	0.12	1.52	2.90
B-105	29	8.84	12	sc	2	0.13	29.2	2093	0.95	0.79	0.93	3335	3335	0.08	40	1.5	6.8	0.09	1.09	2.08
B-105	34	10.37	13	sc	3	0.13	29.2	2094	1.00	0.76	0.90	3910	3610	0.08	39.8	2.3	7.7	0.09	1.14	2.18
B-105	39	11.89	14	sc	3	0.13	29.2	2095	1.00	0.74	0.86	4485	3873	0.08	40	2.2	7.6	0.09	1.11	2.11
B-105	41	12.50	15	sw	35	0.13	29.2	2096	1.00	0.73	0.84	4715	3979	0.08	8.3	25.4	26.1	0.32	3.76	7.16

References: Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", by T.L. Youd et al., J. Geotech. and Geoenvir. Engrg., ASCE, 127(10), 817-833, 2001.

Assumptions/Input:

- 1. Calculations assume unit weight of 115 pcf.
- 2. Amax is the PGA for a 2500-yr return period. PGArock = 0.116g; PGAdesign = 0.13g based upon amplification factor from page 5
- 3. Fines content is based upon visual-manual classification of soil samples
- 4. Formulas for chart values are as follows:

r_d = 1-.00765*.3048*D (for D<30 feet) D = depth, in feet

N₁60 = N*Ce*Cb*Cr*Cs*Cn $C_e = C_b = C_s = 1.0$ C_r = 0.75 to 0.95 $C_n = (P_a/\sigma_{vo}')^0.5$

 $(N_1)_{60cs}$ is Equivalent Clean Sand Value under influence of fines content. $CRR_{7.5}$ estimated based upon corrected blowcount and fines content for M = 7.5

 $CSR = 0.65*(A_{max}/g)*(\sigma_{vo}/\sigma_{vo}')*r_d$ Factor of Safety $M_{7.5} = CRR_{7.5}/CSR$

Factor of Safety M_{design} = (CRR_{7.5}/CSR) * MSF

COMP BY: J. Wen DATE: 8/15/2012 PAGE NO: 2 of 4

TVA WBF Ash Pond Breaching Project Spring City, TN

Liquefaction Potential Evaluation at B-106

Design Earthquake Magnitude (M_{design}) = 5.83 (from USGS deaggregation data, see page 4)

Magnitude Scaling Factor (MSF) = 1.9 (MSF = $10^{2.24}$ /M_w^{2.56})

Boring	Depth, ft	Depth, meters	Sample #	Soil Type	N value	A _{max} , g	Depth to GWT	P _a	C,	C _N	r _d	Total Stress, psf	Effective Stress, psf	CSR	Fines content	(N ₁) ₆₀	(N ₁) _{60cs}	CRR _{7.5}	Factor of Safety for M _{7.5}	Factor of Safety for M _{design}
B-106	1	0.30	1	ML	20	0.13	12.2	2089	0.75	1.70	1.00	115	115	0.08	60	25.5	35.6	non-liquefiable	Non-Liquefiable	Non-Liquefiable
B-106	3	0.91	2	ML	9	0.13	12.2	2089	0.75	1.70	0.99	345	345	0.08	60	11.5	18.8	0.20	2.39	4.55
B-106	5	1.52	3	ML	4	0.13	12.2	2089	0.75	1.70	0.99	575	575	0.08	60	5.1	11.1	0.12	1.47	2.81
B-106	7	2.13	4	CL	4	0.13	12.2	2089	0.75	1.61	0.98	805	805	0.08	59.9	4.8	10.8	0.12	1.45	2.76
B-106	9	2.74	5	CL	5	0.13	12.2	2089	0.75	1.42	0.98	1035	1035	0.08	60	5.3	11.4	0.13	1.52	2.89
B-106	11	3.35	6	CL	4	0.13	12.2	2089	0.80	1.29	0.97	1265	1265	0.08	58.9	4.1	9.9	0.11	1.37	2.60
B-106	17	5.18	7	SM	4	0.13	12.2	2089	0.85	1.12	0.96	1955	1655.48	0.10	45	3.8	9.6	0.11	1.14	2.18
B-106	19	5.79	8	sc	4	0.13	12.2	2089	0.85	1.09	0.96	2185	1760.68	0.10	45	3.7	9.4	0.11	1.08	2.06
B-106	21	6.40	9	sc	8	0.13	12.2	2089	0.95	1.06	0.95	2415	1866	0.10	45	8.0	14.6	0.16	1.51	2.87
B-106	24	7.32	10	sc	3	0.13	12.2	2089	0.95	1.02	0.94	2760	2024	0.11	45.5	2.9	8.5	0.10	0.92	1.75
B-106	29	8.84	11	GW	32	0.13	12.2	2089	0.95	0.96	0.93	3335	2287	0.11	10	29.1	30.6	non-liquefiable	Non-Liquefiable	Non-Liquefiable

References: Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", by T.L. Youd et al., J. Geotech. and Assumptions/Input:

- 1. Calculations assume unit weight of 115 pcf.
- 2. Amax is the PGA for a 2500-yr return period. PGArock = 0.116g; PGAdesign = 0.13g based upon amplification factor from page 5
- 3. Fines content is based upon visual-manual classification of soil samples.
- 4. Formulas for chart values are as follows:

r_d = 1-.00765*.3048*D (for D<30 feet)

D = depth, in feet

N₁60 = N*Ce*Cb*Cr*Cs*Cn $C_e = C_b = C_s = 1.0$ C_r = 0.75 to 0.95 $C_n = (P_a/\sigma_{vo}')^0.5$

(N₁)_{60cs} is Equivalent Clean Sand Value under influence of fines content. $\mathsf{CRR}_{7.5}$ estimated based upon corrected blowcount and fines content for M = 7.5 CSR = $0.65*(A_{max}/g)*(\sigma_{vo}/\sigma_{vo}')*r_{d}$ Factor of Safety M_{7.5} = CRR_{7.5}/CSR Factor of Safety M_{design} = (CRR_{7.5}/CSR) * MSF

CLIENT: TVA
PROJECT: WBF Ash Pond Breaching Project
DETAIL: Liquefaction Potential Analyses

JOB NO: 9012-83529 DATE CHK: 8/15/2012 CHECK BY: D.K.Neamtu COMP BY: J. Wen
DATE: 8/**P3/90**1215 of 219
PAGE NO: 3 of 4

JOB NO: 9012-83529

DATE CHK: 8/15/2012 CHECK BY: D.K.Neamtu COMP BY: J. Wen
DATE: 8/15/2012
PAGE NO: 4 of 4

Page 116 of 219

pg. <u>1</u> of <u>2</u>

Client: TVA Job No. 92016 Calculations By: J. Wen

Project: WBF Ash Pond Breaching Checked By/Date D.K.Neamtu/8-13-12 Date: 08/10/2012

Detail: Slope Stability Reviewed By/Date S.L.Whiteside/8-13-12 Calc #: 1

Revision No./Date: ____

Calculation Brief Title: WBF Ash Pond Breaching Project - Slope Stability Analyses

1.0 Purpose/Objective:

This calculation package contains slope stability analyses under static and seismic conditions for the Ash Pond Breaching Project at the existing Watts Bar Fossil (WBF) plant near Spring Lake, Tennessee. These analyses were performed in support of design of the new spillway structure at Ash/Stilling Pond Area. The objective is to confirm that the calculated factors of safety are equal to or greater than the minimum required for each design case in accordance with Reference B (listed below in Section 3.0).

2.0 Procedure:

The calculations contained herein were performed in general accordance with the requirements outlined in Reference B (listed below in Section 3.0).

- A. The attached Figure 1 shows the location of the critical cross-sections selected for the proposed new spillway structure. Subsurface soil profile and soil strength parameters at this cross section were assumed based on the soil borings(CDM -105 and CDM-106) performed by CDM Smith in this area recently. The subsurface conditions observed in these borings, topographic information collected by the survey, available design drawings, and project Contract Drawings for the site were used as the basis for the stability analyses cross-sections.
- B. Prior to beginning the stability analyses, steady-state seepage analyses were performed using the SEEP/W model developed by GEO-SLOPE International. For the seepage analyses, hydraulic conductivity values of the various subsurface layers were assumed based upon experience in similar geologic units. The seepage model was run under steady-state seepage conditions for each of the design cases to provide input for SLOPE/W.
- C. The slope stability modeling was performed using the SLOPE/W model developed by GEO-SLOPE International, and Spencer Method was selected. The stability criteria for the cross-sections considered the requirements for impoundments and landfills, as listed in Reference B.
- D. This calculation package only includes the proposed condition at the new spillway structure location. The Existing conditions stability analyses were performed previously by CDM Smith and can be found in Reference A (listed below in Section 3.0).
- E. The static stability criteria for impoundments as listed in Section 1.7.2 of Reference B were utilized. The seismic stability criteria for impoundments are the same as those considered for landfills in Section 1.4.2 of Reference B.
- F. Rapid drawdown analyses were performed by using 3-stage computation in accordance with the procedure described in Table 2-1 of Reference D.

pg. 2 of 2

3.0 References/Data Sources:

- A. "Report-Existing Conditions Stability Analyses, Ash Pond Area at Watts Bar Fossil Pant", by CDM Smith, January 31, 2012.
- B. "TVA Coal Combustion Products Management Program, Master Programmatic Document", by URS, December 7, 2009
- C. Borings B-105 and B-106 performed by CDM Smith.
- D. "Slope Stability", USACE EM 1110-2-1902.

4.0 Assumptions and Limitations:

- A. Slope stability cross-sections assume a subsurface profile similar to conditions encountered in the borings in this area. Refer to modeling results for subsurface layers.
- B. Design soil parameters and the basis for selection are summarized in Tables 1a and 1b.
- C. Model boundary conditions used in the seepage models are summarized in Table 2.
- D. Culverts and drop box structures through the cross-section are excluded for clarity. Design cross-section depicts 3H:1V downstream slopes. Headwall stability assessed by structural calculations.

5.0 Calculations: Modeling results for each case are attached and Factors of Safety are summarized in Table 3.

6.0 Conclusions/Results:

- A. Calculated Factors of Safety for Deep-Seated Slope Failures under static and seismic conditions are listed in Tables 3. Deep-seated slope failures are considered to have a minimum depth greater than 10 feet
- B. All cases produce an acceptable factor of safety for slope stability at the proposed spillway location.

Table 1a: Seepage Parameters used in SEEP/W Model

Layer	Material	И	ζ _h	k _h / k _v	Basis of Parameter Selection		
Layer	Material	ft/day	cm/sec	κ _h / κ _ν			
1	Fill		1.0E-06	10	From Peck ⁽¹⁾ ; typical value for mixture of sand, clay, and silt.		
2	Clay	0.0014	5.0E-07	4	From Peck; typical value for low-permeability soil.		
3	Sand	2.83	1.0E-03	4	From Peck; typical value for sand.		
4	Weathered Rock and Gravel	28.35	1.0E-02	4	From Peck; typical value for sand and gravel mixtures.		
5	5 Bedrock		2.0E-07	1	From Domenico ⁽²⁾ ; page 39; high-end value for Shale bedrock.		

Reference:

- 1. Ralph B. Peck, 'Foundation Engineering', 2nd edition; page 43.
- 2. Patrick A. Domenico, 'Physical and Chemical Hydrogeology', 2nd edition.

Table 1b: Strength Parameters used in SLOPE/W Model

Layer	Material	Unit Weight, pcf	Effective Friction Angle, degrees	Undrained Shear Strength, psf	Basis of Parameter Selection ⁽¹⁾
1	Fill	120/115 ⁽²⁾	32	-	Selected based on engineering experiences
2	Clay	110/105 ⁽²⁾	29	1000 ⁽⁵⁾	Selected based on lower 1/3 N-values ⁽³⁾ and pocket penetrometer readings ⁽⁴⁾ from B-105 and B-106
3	Sand	120	28	-	Selected based on Lower 1/3 N-values ⁽³⁾ from B-105 and B-106
4	Weathered Rock and Gravel	125	36	-	Based upon experience in similar geologic conditions
5	Bedrock		Impenetrable		Assumed

Note:

- 1. Correlation of N-value and friction angle from Ralph B. Peck, 'Foundation Engineering', 2nd edition, 1974; page 310.
- 2. Values listed are saturated/moist unit weights.
- 3. Lower 1/3 value is defined as the value where at least 2/3 of all the readings are greater or equal. N-value is defined as the sum of the blows to drive the 2nd and 3rd 6-inchincrements of each split spoon sample.
- 4. Pocket penetrometer readings were performed on split spoon samples and Shelby tube sample during drilling.
- 5. Undrained shear strength used for end of construction, rapid drawdown and seismic conditions.

Table 2 - Boundary Conditions used in Seepage Model

Run#	Modeling Scenario	West Side Boundary	East Side Boundary
1	End of Construction	Groundwater Level of EL 693	
2	Long Term-Maximum Surcharge Pool	100-year Storm Water Level of EL 700	Max Normal Pool of EL 682.5
3	Rapid Drawdown	Rapid drawdown from EL 700 to EL 695	in Chickamauga Lake
4	Seismic Condition	Normal Pool of EL 698	

Table 3 - Results of Slope Stability Analyses

Run #	Modeling Scenario ⁽²⁾	Required Factor of	Calculated Fa	ctor of Safety ⁽¹⁾
Kull#	Modeling Scenario	Safety	inboard	outboard
1	End of Construction	1.3	2.5	1.7
2	Long Term with Maximum Pool Level	1.5	2.5	1.7
3	Rapid Drawdown Condition	1.3	2.0	N/A
4	Seismic Condition ⁽³⁾	1.0	1.8	1.1

Notes:

- 1. Factor of Safety was calculated by using Spencer Method. Failure surfaces less than 10-foot-deep were not considered deep-seated, and results are not listed here.
- 2. For run 1 and 4, undrained strength was used for clay layer. For run 3, both drained and undrained strength were considered in the clay layer.
- 3. For seismic condition, a 2500-year return period PHA=0.116g was used as peak ground acceleration.

N/A: Not Applicable.

Project: WBF Ash Pond Breaching

Run #1

Location: New Spillway at Ash Pond

Model Scenario:

Proposed Conditon at New Spillway Static Analysis - End of Construction Date & Time: 8/9/2012 2:35:45 PM

TVA Watts Bar Fossil Plant, Spring City, TN Slope Stability Analyses New Spillway Location at Wet Ash Pond Area

Layer 1: Fill 120 pcf 115 pcf 0 psf 32 °

Layer 2: Clay 110 pcf 105 pcf 1000 psf 0 °

Layer 3: Sand 120 pcf 0 psf 28 °

Layer 4: Weathered Rock and Gravel 125 pcf 0 psf 36 °

Layer 5: Bedrock

Computed By: Wen, Jintao

Project: WBF Ash Pond Breaching

Computed By: Wen, Jintao
Date & Time: 8/9/2012 2:35:45 PM

Run #1 Location: New Spillway at Ash Pond

Model Scenario: Proposed Conditon at New Spillway Static Analysis - End of Construction TVA Watts Bar Fossil Plant, Spring City, TN Slope Stability Analyses New Spillway Location at Wet Ash Pond Area

Layer 1: Fill 120 pcf 115 pcf 0 psf 32 °
Layer 2: Clay 110 pcf 105 pcf 1000 psf 0 °
Layer 3: Sand 120 pcf 0 psf 28 °
Layer 4: Weathered Rock and Gravel 125 pcf 0 psf 36 °
Layer 5: Bedrock

Project: WBF Ash Pond Breaching

Run #2

Location: New Spillway at Ash Pond

Model Scenario:

Proposed Condition at New Spillway Long Term Max Pool Condition TVA Watts Bar Fossil Plant, Spring City, TN Slope Stability Analyses

New Spillway Location at Wet Ash Pond Area

Layer 1: Fill 120 pcf 115 pcf 0 psf 32 °
Layer 2: Clay 110 pcf 105 pcf 0 psf 29 °
Layer 3: Sand 120 pcf 0 psf 28 °
Layer 4: Weathered Rock and Gravel 125 pcf 0 psf 36 °

Layer 5: Bedrock

Computed By: Wen, Jintao

Date & Time: 8/9/2012 2:47:58 PM

Project: WBF Ash Pond Breaching

Run #2

Location: New Spillway at Ash Pond

Model Scenario:

Proposed Condition at New Spillway Long Term Max Pool Condition Date & Time: 8/9/2012 2:47:58 PM

TVA Watts Bar Fossil Plant, Spring City, TN Slope Stability Analyses New Spillway Location at Wet Ash Pond Area

Layer 1: Fill 120 pcf 115 pcf 0 psf 32 °
Layer 2: Clay 110 pcf 105 pcf 0 psf 29 °
Layer 3: Sand 120 pcf 0 psf 28 °
Layer 4: Weathered Rock and Gravel 125 pcf 0 psf 36 °
Layer 5: Bedrock

Computed By: Wen, Jintao

Project: WBF Ash Pond Breaching

Computed By: Wen, Jintao
Date & Time: 8/15/2012 5:31:50 PM

TVA Watts Bar Fossil Plant, Spring City, TN Slope Stability Analyses New Spillway Location at Wet Ash Pond Area

Run #3 Location: New Spillway at Ash Pond

Model Scenario:

Proposed Condition at New Spillway Rapid Drawdown Condition

Layer 1: Fill 120 pcf 115 pcf 0 psf 32 ° 0 psf 0 ° 1 2

Layer 2: Clay 110 pcf 105 pcf 0 psf 29 ° 1000 psf 0 ° 1 2

Layer 3: Sand 120 pcf 0 psf 28 ° 0 psf 0 ° 1 2

Layer 4: Weathered Rock and Gravel 125 pcf 0 psf 36 ° 0 psf 0 ° 1 2

Layer 5: Bedrock 1 2

Project: WBF Ash Pond Breaching

Run #4

Location: New Spillway at Ash Pond

Model Scenario:

Proposed Conditon at New Spillway Seismic Analysis - PHA=0.116g Computed By: Wen, Jintao
Date & Time: 8/9/2012 2:41:47 PM

TVA Watts Bar Fossil Plant, Spring City, TN Slope Stability Analyses New Spillway Location at Wet Ash Pond Area

Layer 1: Fill 120 pcf 115 pcf 0 psf 32 °
Layer 2: Clay 110 pcf 105 pcf 1000 psf 0 °
Layer 3: Sand 120 pcf 0 psf 28 °
Layer 4: Weathered Rock and Gravel 125 pcf 0 psf 36 °
Layer 5: Bedrock

Project: WBF Ash Pond Breaching

Run #4

Location: New Spillway at Ash Pond

Model Scenario:

Proposed Conditon at New Spillway Seismic Analysis - PHA=0.116g Computed By: Wen, Jintao

Date & Time: 8/9/2012 2:41:47 PM

TVA Watts Bar Fossil Plant, Spring City, TN Slope Stability Analyses New Spillway Location at Wet Ash Pond Area

Layer 1: Fill 120 pcf 115 pcf 0 psf 32 °
Layer 2: Clay 110 pcf 105 pcf 1000 psf 0 °
Layer 3: Sand 120 pcf 0 psf 28 °
Layer 4: Weathered Rock and Gravel 125 pcf 0 psf 36 °
Layer 5: Bedrock

Exhibit 5 Structural Calculations

DESIGN SEISMIC BASE SHEAR

CAST IN PLACE CONCRETE DESIGN – INLET

CAST IN PLACE CONCRETE DESIGN – OUTLET

PRECAST CULVERT DESIGN FOR INLET AND OUTLET

PROJECT Watt

PROJECT Watts Bar Ash Pond

DETAIL Design Seismic Base Shear

PROJECT NO. 92016.2202

COMPUTED BY / DATE

CHECKED BY / DATE

REVISION NO. / DATE

REVIEWED BY / DATE

Calculation Description:

Design Seismic Base Shear

1.0 Objective

Determine seismic base shear applied to the inlet and outlet concrete structure.

2.0 Procedure

- 1.) Determine soil site class per Geotechnical Design Memorandum.
- 2.) Find latitude/longitude of plant to determine spectral accelerations and seismic site coefficients from USGS.
- 3.) Determine Seismic Design Category from IBC Table 1613.5.1 and equations 16-37 thru 16-40.
- 4.) Determine response modification coefficients, importance factor for occupancy category, and seismic response coefficients.
- 5.) Calculate weight and volume of inlet weir wall, wingwall, and outlet end, respectively.
- 6.) Calculate Seismic Design Base Shear on structure.

3.0 References / Data Sources

- 1.) Geotechnical Design Memorandum
- 2.) USGS Seismic Data
- 3.) ASCE 7
- 4.) IBC 2006

4.0 Assumptions / Limitations

1.) Design Base Shear is taken throughout the structure.

5.0 Calculations

- 5.1 Determine soil site class per Geotechnical Design Memorandum.
- Refer to Geotechnical Design Memorandum
- 5.2 Find latitude/longitude of plant to determine spectral accelerations and seismic site coefficients from USGS.
- Refer to sheet printed with address and lat/long and USGS output data.
- 5.3 Determine Seismic Design Category from IBC Table 1613.5.1 and equations 16-37 thru 16-40.
- Refer to Mathcad Spreadsheet "Design Base Shear"
- 5.4 Determine response modification coefficients, importance factor for occupancy category, and seismic response coefficients.
- Refer to EXCEL spreadsheet "Hydrodynamic Loads with Earthquake in Transverse Direction"
- 5.5 Calculate weight and volume of inlet weir wall, wingwall, and outlet end, respectively.
- 5.6 Calculate Seismic Design Base Shear on structure.
- For 5.5 and 6.6, refer back to the Mathcad Spreadsheet "Design Base Shear"

6.0 Conclusions

⁻ The Seismic Design Category for this project is "C" and the design base shear for the inlet structure is approximately 52 kips and for the outlet structure is approximately 43 kips.

Page 133 of 219

USGS Design Maps Summary Report

User-Specified Input

Report Title TVA Watts Bar

Fri August 17, 2012 15:45:44 UTC

Building Code Reference Document 2006/2009 International Building Code

(which makes use of 2002 USGS hazard data)

Site Coordinates 35.6°N, 84.78°W

Site Soil Classification Site Class D - "Stiff Soil"

Occupancy Category Occupancy Category

USGS-Provided Output

$$S_s = 0.443 g$$

$$S_{MS} = 0.641 g$$

$$S_1 = 0.114 g$$

$$S_{M1} = 0.268 g$$

$$S_{DS} = 0.427 g$$

$$S_{D1} = 0.178 g$$

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

USGS Design Maps Detailed Report

2006/2009 International Building Code (35.6°N, 84.78°W)

Section 1613.5.1 — Mapped acceleration parameters

Note: Maps in the 2006 and 2009 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.5.3.

From <u>Figure 1613.5(1)[1]</u>

 $S_s = 0.443 g$

From Figure 1613.5(2)[2]

 $S_1 = 0.114 g$

Section 1613.5.2 — Site class definitions

SITE CLASS	SOIL PROFILE NAME	Soil shear wave velocity, \bar{v}_s , (ft/s)	Standard penetration resistance, \overline{N}	Soil undrained shear strength, \bar{s}_u , (psf)				
Α	Hard rock	$\bar{v}_{\rm s} > 5,000$	N/A	N/A				
В	Rock	$2,500 < \overline{v}_{s} \le 5,000$	N/A	N/A				
С	Very dense soil and soft rock	$1,200 < \overline{v}_{s} \le 2,500$	<i>N</i> > 50	>2,000 psf				
D	Stiff soil profile	$600 \le \overline{v}_{s} < 1,200$	$15 \le \overline{N} \le 50$	1,000 to 2,000 psf				
Е	Stiff soil profile	$\bar{v}_{\rm s} < 600$	N̄ < 15	<1,000 psf				
E	_	Any profile with more than 10 ft of soil having the characteristics: 1. Plasticity index $PI > 20$, 2. Moisture content $w \ge 40\%$, and 3. Undrained shear strength $\overline{s}_{u} < 500$ psf						
F	_	 Any profile containing soils having one or more of the following characteristics: Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils. Peats and/or highly organic clays (H > 10 feet of peat and/or highly organic clay where H = thickness of soil) Very high plasticity clays (H > 25 feet with plasticity index PI > 75) Very thick soft/medium stiff clays (H > 120 feet) 						

For SI: $1ft/s = 0.3048 \text{ m/s} 1lb/ft^2 = 0.0479 \text{ kN/m}^2$

Section 1613.5.3 — Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.5.3(1)
VALUES OF SITE COEFFICIENT F_a

Site Class	Mapped Spectral Response Acceleration at Short Period				
	S _s ≤ 0.25	$S_s = 0.5$	$S_s = 0.75$	S _s = 1	S _s ≥ 1.25
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F	See Section 11.4.7 of ASCE 7				
Note: Use straight-line interpolation for intermediate values of S					

Note: Use straight–line interpolation for intermediate values of $\boldsymbol{S}_{\boldsymbol{s}}$

For Site Class = D and $S_s = 0.443 g$, $F_a = 1.445$

TABLE 1613.5.3(2) VALUES OF SITE COEFFICIENT F_{ν}

Site Class	Mapped Spectral Response Acceleration at 1-s Period				
	$S_{1} \leq 0.1$	$S_{i} = 0.2$	$S_{_{1}} = 0.3$	$S_1 = 0.4$	$S_1 \ge 0.5$
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F	See Section 11.4.7 of ASCE 7				
Not	Note: Use straight-line interpolation for intermediate values of S ₁				S_{i}

For Site Class = D and $S_1 = 0.114 \text{ g}$, $F_v = 2.343$

In the equations below, the equation number corresponding to the 2006 edition is listed first, and that corresponding to the 2009 edition is listed second.

$$S_{MS} = F_a S_S = 1.445 \times 0.443 = 0.641 g$$

$$S_{M1} = F_v S_1 = 2.343 \times 0.114 = 0.268 g$$

Section 1613.5.4 — Design spectral response acceleration parameters

$$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 0.641 = 0.427 g$$

$$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.268 = 0.178 g$$

Section 1613.5.6 — Determination of seismic design category

TABLE 1613.5.6(1)
SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD RESPONSE ACCELERATION

VALUE OF S _{ps}	C	RY		
VALUE OF S _{DS}	I or II	III	IV	
S _{os} < 0.167g	А	Α	А	
$0.167g \le S_{DS} < 0.33g$	В	В	С	
$0.33g \le S_{DS} < 0.50g$	С	С	D	
$0.50g \leq S_{DS}$	D	D	D	

For Occupancy Category = I and S_{DS} = 0.427 g, Seismic Design Category = C

TABLE 1613.5.6(2)

SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF S _{D1}	0	RY		
VALUE OF S _{D1}	I or II	III	IV	
S _{D1} < 0.067g	A	А	А	
$0.067g \le S_{_{D1}} < 0.133g$	В	В	С	
$0.133g \le S_{D1} < 0.20g$	С	С	D	
0.20g ≤ S _{D1}	D	D	D	

For Occupancy Category = I and $S_{01} = 0.178$ g, Seismic Design Category = C

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Occupancy Categories I, II, and III, and **F** for those in Occupancy Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 1613.5.6(1) or 1613.5.6(2)" = C

Note: See Section 1613.5.6.1 for alternative approaches to calculating Seismic Design Category.

References

- 1. Figure 1613.5(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2006-Figure1613_5(01).pdf
- 2. Figure 1613.5(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2006-Figure1613_5(02).pdf

PROJECT Ash Pond Breaching Project DETAIL Design Base Shear

DATE CHECKED

COMPUTED BY PHS Page 15% Tof 219 PAGE NO.

Determine Seismic Design Category per IBC 2006

Per IBC 2006 and Table 1613.5.2, the project site must be considered as class site "D".

Per USGS Seismic lookup for lat/long 35.611,-84.782:

 $S_s := 0.441$

 $S_1 := .114$

Per Table 1613.5.3(1): $F_a := 1.448$

(linearly interpolated)

· ok

Per Table 1613.5.3(2):

 $F_v := 2.344$

 $S_{ms} := F_a \cdot S_s$

 $S_{ms} = 0.639$

(Eq16 - 37)

 $S_{m1} := F_v \cdot S_1$

 $S_{m1} = 0.267$

(Eq16 - 38)

 $S_{DS} := \frac{2}{3} \cdot S_{ms}$

 $S_{DS} = 0.426$

(Eq16 - 39)

 $S_{D1} := \frac{2}{3} \cdot S_{m1}$

 $S_{D1} = 0.178$

(Eq16 - 40)

Per Table 1613.5.1(1) for occupancy category III, The seismic design category based on Sds is "C".

Per Table 1613.5.1(2) for occupancy category III, the seismic design category based on Sd1 is "C".

Therefore, the structure must be designed per seismic design category "C".

 $R_c := 1$

Response Modification Coefficient

 $R_i := 2$

Response Modification Coefficient

I := 1.25

Importance Factor for Occupancy Category III

 $C_i := S_{DS} = 0.426$

Seismic Response Coefficient, ACI

 $T_L := 12s$

ASCE 7

 $C_c := .053 = 0.053$ From calculation "Hydrodynamic Loads with Earthquake in Transverse Direction"

 $\gamma_{\rm conc} := 150 \, \rm pcf$

Weight of Concrete

Inlet Weir with Wingwall

 $h_{wall} := 7.25 ft$

 $t_{\text{wall}} := 12in$

toe := 12in

 $l_{slab} := 34ft + 4in$

 $w_{slab} := 22ft$

 $t_{slab} := 14in$

 $h_{wingwall} := 13ft$

 $l_{wingwall} := 11.67ft$

Height of Weir Wall

Thickness of weir wall

Toe on wall

Length of slab

Width of slab

Thickness of Slab

Total maximum height of Wingwall

Length of Wingwall

$$wall_{volume} \coloneqq 2 \cdot l_{slab} \cdot h_{wall} \cdot t_{wall} + 2 \cdot w_{slab} \cdot h_{wall} \cdot t_{wall} + 2 \cdot 12.75 \text{ft} \cdot t_{wall} \cdot 5.25 \text{ft} = 950.708 \text{ ft}^3$$

wingwall_{volume} :=
$$2 \cdot l_{wingwall} \cdot (h_{wingwall} \cdot t_{wall}) = 303.42 \text{ ft}^3$$

$$weight_{inletweir} := \gamma_{conc} \cdot (wall_{volume} + wingwall_{volume}) = 188.119 \cdot kip$$

$$P_i := C_i \cdot I \cdot \frac{\text{weight}_{\text{inletweir}}}{R_i} = 50.053 \cdot \text{kip}$$

$$P_c := C_c \cdot I \cdot \frac{\text{weight}_{\text{inletweir}}}{R_c} = 12.463 \cdot \text{kip}$$

$$V := \sqrt{P_i^2 + P_c^2} = 51.581 \cdot \text{kip}$$

Design Base Shear

Outlet End

$$h_{wall} := 15.33 ft$$

 $l_{wingwall} := 21.5 ft$

 $l_{wall} := 37.17ft$

wingwall_{volume} :=
$$(2 \cdot l_{wingwall} + l_{wall}) \cdot (h_{wingwall} \cdot t_{wall}) = 1.042 \times 10^3 \text{ ft}^3$$

 $weight_{outlet} := \gamma_{conc} \cdot wingwall_{volume} = 156.332 \cdot kip$

$$P_i := C_i \cdot I \cdot \frac{weight_{outlet}}{R_i} = 41.595 \cdot kip$$

$$P_c := C_c \cdot I \cdot \frac{\text{weight}_{\text{outlet}}}{R_c} = 10.357 \cdot \text{kip}$$

$$V := \sqrt{P_i^2 + P_c^2} = 42.865 \cdot \text{kip}$$

Maximum Height of Wall Length of Wingwall Length of weir wall

Design Base Shear

Project: Ash Pond Breaching Project

Detail: Seismic Design

Job Number: 95618-92016

Date Checked: 2/17/12 Checked By: Faggnuted by: PHS Date:8/16/2012 Page No:

HYDRODYNAMIC LOADS WITH EARTHQUAKE IN TRANSVERSE DIRECTION

GEOMETRIC PROPERTIES

H _L =	7.25 [ft]	Operating Height of Water
L=	36.17 [ft]	Tank Wall Length in Seismic Direction
B=	1 [ft]	Analyzed Width of Tank Wall
$H_L/L=$	0.20 [ft]	
L/2=	18.085 [ft]	Half of wall length
t _w =	1 [ft]	Wall thickness

MATERIAL PROPERTIES

γ_c =	150 [pc	f] Concrete unit weight
f' _c =	4500 [ps	i] Compressive Strength
$E_c = 57000*(f'_c)^{0.5} =$	3824 [ks	i] Elastic Modulus
$\gamma_{L} =$	62.4 [pc	f] Water unit weight

GEOMETRIC CALCULATIONS

$$W_L=B*L*H_L*\gamma_L=$$
 16.4 [k] Fluid Weight

EQUIVALENT WEIGHTS OF ACCEL. LIQUID

$$\frac{W_i}{W_L} = \frac{\tanh[\ 0.866(\frac{L}{H_L})]}{0.866(\frac{L}{H_L})} = 0.231$$
 ACI 350.3-06 Eq 9-1

$$\frac{W_c}{W_L} = 0.264(\frac{L}{H_L}) \tanh[3.16(\frac{H_L}{L})] = 0.738$$
 ACI 350.3-06 Eq 9-2

HEIGHTS TO COG EBP

$$\frac{h_i}{H_L} = \begin{cases} \frac{L}{H_L} < 1.333 \rightarrow \frac{h_i}{H_L} = 0.5 - 0.09375 \left(\frac{L}{H_L}\right) \\ \frac{L}{H_L} \ge 1.333 \rightarrow \frac{h_i}{H_L} = 0.375 \end{cases} = 0.3750$$
ACI 350.3-06 Eq 9-3 and 9-4

$$\frac{h_c}{H_L} = 1 - \frac{\cosh\left[3.16\left(\frac{H_L}{L}\right)\right] - 1}{3.16\left(\frac{H_L}{L}\right)\sinh\left[3.16\left(\frac{H_L}{L}\right)\right]} = 0.52$$
 ACI 350.3-06 Eq 9.5

Project: Ash Pond Breaching Project

Detail: Seismic Design

Job Number: 95618-92016

Date Checked: 8/17/12

Checked By:

Computed by: PHS Date:8/16/2012

Page No:

HEIGHTS TO COG IBP

HEIGHTS TO COG IBP
$$\frac{h_{i}'}{H_{L}} = \begin{cases}
\frac{L}{H_{L}} < 0.75 \rightarrow \frac{h_{i}'}{H_{L}} = 0.45 \\
\frac{L}{H_{L}} \ge 0.75 \rightarrow \frac{h_{i}'}{H_{L}} = \frac{0.866 \left(\frac{L}{H_{L}}\right)}{2 \tanh \left[0.866 \left(\frac{L}{H_{L}}\right)\right]} - \frac{1}{8}
\end{cases} = 2.04$$

ACI 350.3-06 Eq 9-6 and 9-7

$$\frac{\dot{h}_{c}'}{H_{L}} = 1 - \frac{\cosh\left[3.16\left(\frac{H_{L}}{L}\right)\right] - 2.01}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left[3.16\left(\frac{H_{L}}{L}\right)\right]} = 2.87$$

ACI 350.3-06 Eq 9-8

DYNAMIC PROPERTIES

$$\lambda = \sqrt{3.16g \tanh \left[3.16 \left(\frac{H_L}{L} \right) \right]} = 7.55 \text{ (ft/s}^2)^{1/2} \quad \text{ACI 350.3-06 Eq 9-13}$$

$$\omega_c = \frac{\lambda}{\sqrt{L}} = 1.256 \text{ [Hz]} \quad \text{ACI 350.3-06 Eq 9-12}$$

$$Tc = \frac{2\pi}{\omega_c} = 5.004 \text{ [sec]} \quad \text{ACI 350.3-06 Eq 9-14}$$

SEISMIC DESIGN INFORMATION

S _{DS} =	0.43	Short period code spectra acceleration
S _{D1} =	0.18	1-sec period code spectra acceleration
$T_s = S_{D1}/S_{DS} =$	0.42	ACI 350.3-06 Eq 9-34
R _i =	2.00	ACI 350.3-06 Table 4.1.1(b)
$R_c =$	1.00	ACI 350.3-06 Table 4.1.1(b)
I=	1.25	ACI 350.3-06 Table 4.1.1(a)
$T_L =$	12.00 sec	ASCE 7-10 Fig 22-12

SEISMIC RESPONSE COEFFICIENTS

$$C_i = S_{DS} = 0.43$$
 ACI 350.3-06 Eq 9-32 (conservative)
 $C_c = 0.053$ ACI 350.3-06 Eq. 9-37
 $C_t = 0.4S_{DS} = 0.1704$ ACI 350.3-06 Sec 9.4.3

EFFECTIVE MASS COEFFICIENT ϵ

$$\varepsilon = \left[0.0151* \left(\frac{L}{H_L} \right)^2 - 0.1908* \left(\frac{L}{H_L} \right) + 1.021 \right] \le 1.0 = 0.44$$
 ACI 350.3-06 Eq 9-44

VERTICAL ACCELERATION

Project: Ash Pond Breaching Project

Detail: Seismic Design

Job Number: 95618-92016

Date Checked: 8/17/12

Checked By: #

Page No:

$$\ddot{u}_V = Sav \cdot \left[\frac{I}{R_i} \right] \ge 0.2S_{DS} = 0.085$$
 ACI 350.3-06 Eq 4-15

$$q_{hy} = \gamma_{fluid} H_L =$$
 0.452 [ksf]

Lateral static pressure of fluid

$$p_{yy} = \ddot{u}_V q_{hy} = 0.039 \text{ [ksf]}$$

ACI 350.3-06 Eq 4-14

DYNAMIC LATERAL FORCES

$$P_i = C_i I \left[\frac{W_i}{R_c} \right] = 1.008 \text{ [k]}$$
 ACI 350.3-06 Eq 4-3
 $P_C = C_C I \left[\frac{W_C}{R_C} \right] = 0.81 \text{ [k]}$ ACI 350.3-06 Eq 4-4

IMPULSIVE

$$q_{i_top} = \frac{\frac{P_i}{2} \left[4 * H_L - 6 * h_i - (6 * H_L - 12 * h_i) * 1 \right]}{H_i^2} = 0.017 \text{ ksf}$$

$$q_{i_bot} = \frac{\frac{P_i}{2} \left[4 * H_L - 6 * h_i - (6 * H_L - 12 * h_i) * 0 \right]}{H_i^2} = 0.122 \text{ ksf}$$

CONVECTIVE

$$q_{c_top} = \frac{\frac{P_C}{2} \left[4 * H_L - 6 * h_C - (6 * H_L - 12 * h_C) * 1 \right]}{H_L^2} = 0.061 \text{ ksf}$$

$$q_{C_bot} = \frac{\frac{P_C}{2} \left[4 * H_L - 6 * h_C - (6 * H_L - 12 * h_C) * 0 \right]}{H_L^2} = 0.050 \text{ ksf}$$

FREE BOARD PER ACI350.3

$$Cc = 0.04083$$

$$d_{\max} = \frac{L}{2} C_c I = \frac{1}{2} C_c I = \frac{1}$$

12 Inches Freeboard Required

Wall Weight Wall Impulsive 0.15 ksf

0.018 ksf

PROJECT NO. 92016.2202

Calculation Description:

Cast In Place Concrete Design - Inlet Structure

1.0 Objective

Design all cast in place concrete inlet structure to be able to handle applied loads.

2.0 Procedure

- 1.) Determine loads applied to all walls (wingwall and weir), beams, columns. Including seismic, fluid/earth lateral load, pedestrian live load (on rail), HS-20 Vehicle Live Load surcharge, Soil Vertical Pressure, and Self-weight of concrete.
- 2.) Calculate applied moments and shears using AASHTO load combinations.
- 3.) Calculate flexural (moment) and shear capacities of walls (wingwall and weir), beams, and columns.
- 4.) Check overturning, sliding, and bearing for the wingwalls.
- 4.) Check torsion requirements for beams.
- 5.) Check all capacity/applied ratios are less than 1.
- 6.) Check Buoyancy for Inlet Structure

3.0 References / Data Sources

- 1.) ASCE 7
- 2.) IBC 2006
- 3.) ACI 318

4.0 Assumptions / Limitations

- 1.) Wingwalls are designed as cantilevered retaining walls at maximum height.
- 2.) Inlet weir structure designed as cantilevered wall, does not meet requirements to design as panel.

5.0 Calculations

5.1 Weir Wall

- Refer to Mathcad spreadsheet "Inlet Weir-Wall" for full design calculations.

5.2 Wingwall

- Refer to RetainPro Output Titled "Inlet Stem Wall" for full design calculations (including stability requirements) and wall diagrams.

5.3 Column Between Box Culverts

- Refer to Enercalc output "Concrete Column at inlet weir between box culverts" for full design calculations and wall diagrams.

5.4 Beam Above Box Culverts

- Refer to Enercalc output "Beam between culverts - vertical load on beam" and "Beam between culverts - horizontal load on beam" and Mathcad spreadsheet "Beam between inlet culverts" for full design calculations and diagrams.

5.5 Buoyancy Calculations

- Refer To excel spreadsheet "Buoyancy Check for Rectangular Tanks"

6.0 Conclusions

- The weir wall and wingwall are 12" thick, with max heights of 7'-3" and reinforcing of #6 @ 6inches on center, each way, each face. The wingwall requires a 4'-6" heel and toe, and a 4'-6" key to meet stability requirements.
- The columns between culverts are also 12" thick, and 26" wide, with #6 @ 6inches on center, each way, each face.
- The beams above the culverts are 12" wide, with reinforcing #6 @ 6inches on center, each way, each face.

CDM Smith

Project Name: TVA Calculations By: PHS
Project Number: 95618-92016 Checked By:

Subject: Inlet Weir-Wall Date: \$-17-72

LIMITATIONS: This program should only be used with a full knowledge of the analysis procedure used in the program. Result of the program is subject to structural engineering evaluation and judgment. This program is for the use of CDM Structural Engineering Staff Only.

CANTILEVER WALL DESIGN - SINGLE DOWEL

This program analyzes the main reinforcement of a cantilever retaining wall which utilizes a standard reinforcement layout. The standard layout is comprised of vertical bars at 6" oc and dowels at 6" oc. The program also checks the shear capacity of the stem. This reinforcement layout is considered to be economical for wall heights less than 12' for water loading and less than 10' for earth loading.

User Input

>> Wall Height - Range: h := 0..7.25 ft

>> Wall Height - Max : hmax := 7.25 ft

>> Wall Thickness hw := 12 inches

>> Fluid Density (*) $\gamma := 90$ psf

>> Lateral Load Factor LF := 1.69

>> Durability Factor (dowel) $S_{D\ d} := 1.0$

>> Durability Factor (vert): $S_{D_v} := 1.0$

(*)- 63 pcf for water, 90 to 120 pcf for earth fill

>> Concrete Strength fc := 4500 psi

>> Steel Strength fy:= 60000 psi

>> Concrete Cover c := 2.0 inches

>> Vehicle Lateral Live Loa VL := 120 psf

Earth Surcharge Factor ES := 2.17

>> Seismic Lateral Load SL := 40 psf

EQ := 1.0

Vehicle Surcharge governs, Seismic not used

Flexural Analysis

Procedure

Revise Dowel and Vertical Bar Sizes such that Moment Capacity (ϕMn) > Factored Moment (Mu). Note: Std Dowel Spacing is 6" and Vertical Spacing is 6".

Select Reinforcement Sizes

>>Dowel Size / Area
$$\phi d := 6$$
 Ad := $(\phi d \cdot 0.125)^2 \cdot \frac{\pi}{4} \cdot 2$ Ad = 0.884 sq.in/ft

>> Vert. Size
$$\phi v := 6$$
 Av := $(\phi v \cdot 0.125)^2 \cdot \frac{\pi}{4} \cdot 2$ Av = 0.884 sq.in/ft

Effective Depth Dowels:
$$dd := (hw - c) - (0.5 \cdot \phi d \cdot .125)$$

$$dd = 9.625$$
 inches

Effective Depth Verticals :
$$dv := (hw - c) - (0.5 \cdot \varphi v \cdot .125)$$

$$dv = 9.625$$
 inches

Check Min. Steel Ratio

Steel Ratio Dowels:
$$\rho d := \frac{Ad}{(12 \cdot dd)}$$
 $\rho d = 0.00765$ $Cd := if \left(\rho d \ge 0.003, 1, \frac{1}{1.33} \right)$

Steel Ratio Verticals:
$$\rho v := \frac{Av}{(12 \cdot dv)}$$
 $\rho v = 0.00765$ $Cv := if \left(\rho v \ge 0.003, 1, \frac{1}{1.33}\right)$

$$Cd = 1$$
 $Cv = 1$

Moment Capacity

Moment Capacity -Dowels
$$\phi Md(h) := \frac{0.9 \cdot Ad \cdot fy}{12000} \cdot \left[dv - \frac{Ad \cdot fy}{2 \cdot 12 \cdot (0.85 \cdot fc)} \right] \cdot Cd$$
 kip-ft (Eqn 3)

$$\phi Md(1) = 35.974$$
 kip-ft

Moment Capacity - Verticals
$$\phi Mv(h) := \frac{0.9 \cdot Av \cdot fy}{12000} \cdot \left[dv - \frac{Av \cdot fy}{2 \cdot 12 \cdot (0.85 \cdot fc)} \right] \cdot Cv$$
 kip-ft (Eqn 4) $\phi Mv(1) = 35.974$ kip-ft

Redefine Moment Capacity of Verticals as a scalar value ($\phi Mv1$)

Moment Capacity - Verticals
$$\phi Mv1 := \phi Mv(1)$$
 kip-ft (Eqn 5)

Substitute Eqn 5 into Eqn 1 to calculate h (h1) the point at which moment capacity of verticals equal to applied Factored Moment

$$h1 := \left[\frac{\phi M v \cdot 1000}{\frac{1}{6} \cdot \left(LF \cdot S_{D_{v}} \cdot \gamma \right) + \frac{1}{2} \left(VL \cdot ES \cdot S_{D_{v}} \right)} \right]^{0.33333}$$

$$h1 = 6.138 \text{ ft}$$

Projection Length of Loaded Face Dowels:
$$pl := hmax - h1 + \frac{dv}{12}$$
 $pl = 1.914$ ft

$$Ld := if \left[\phi d > 6,0.05 \cdot \phi d \cdot 0.125 \cdot \frac{fy}{\sqrt{fc}} \cdot \left(\frac{1}{12} \right), 0.04 \cdot \phi d \cdot 0.125 \cdot \frac{fy}{\sqrt{fc}} \cdot \left(\frac{1}{12} \right) \right]$$

$$Ld = 2.236 \quad \text{ft}$$

$$pl := (if(Ld > pl, Ld, pl))$$

$$pl = 2.236$$

Moments and Shears

Factored Moment (dowel):
$$\text{Mu}_{d}(h) := \frac{1}{6 \cdot 1000} \cdot \left(\text{LF} \cdot \text{S}_{\text{D_d}} \cdot \gamma \cdot h^{3} \right) + \frac{1}{2 \cdot 1000} \left(\text{VL} \cdot \text{ES} \cdot h^{2} \right)$$
 kip-ft (Eqn 1)

Factored Moment (vert):
$$\text{Mu}_{v}(h) := \frac{1}{6 \cdot 1000} \cdot \left(\text{LF} \cdot \text{S}_{\text{D_v}} \cdot \gamma \cdot h^{3} \right) + \frac{1}{2 \cdot 1000} \left(\text{VL} \cdot \text{ES} \cdot h^{2} \right)$$
 kip-ft (Eqn 1)

Max. Factored Moment (vert):
$$Mu_v \left(h1 - \frac{dv}{12} \right) = 7.558$$

Factored Shear :
$$Vu(h) := \frac{1}{2 \cdot 1000} \cdot \left(LF \cdot \gamma \cdot h^2 \right) + \frac{1}{1000} (VL \cdot ES \cdot h)$$
 kips (Eqn 2)

Check Moment Capacities

Moment Capacity - Dowels
$$\phi$$
Md(hmax) = 35.974 kip-ft

Moment Capacity - Verticals at Dowel Cutoff Poin
$$\phi Mv \left(h1 - \frac{dv}{12}\right) = 35.974$$
 kip-ft

Moment Capacity Ratio - Dowels
$$\frac{Mu_d(hmax)}{\phi Md(hmax)} = 0.459 \qquad OK \text{ if } < 1$$
Increase As if > 1

$$\frac{\text{Moment Capacity Ratio - Verticals}}{\phi \text{Mv1}} = \frac{\text{Mu}_v \left(\text{h1} - \frac{\text{dv}}{12} \right)}{\phi \text{Mv1}} = 0.21 \quad \text{OK if } < 1$$
Increase As if > 1

Shear Capacity
$$\phi Vn := \frac{0.85 \cdot 12 \cdot dd \cdot 2 \cdot \sqrt{fc}}{1000} \qquad \phi Vn = 13.172 \text{ kips}$$

Shear Capacity Ratio
$$\frac{\text{Vu(hmax)}}{\phi \text{Vn}} = 0.447$$

Following variables are defined to facilitate graphing

- Variable change
- ha(h) := hmax h
- Dowel Proj. Range Variable
- hdl := 0, 0.1..pl
- pl = 2.236

Design Summary

- Wall Thickness
- hw = 12 inches

---- Dowel Projection

- Dowel Size
- $\phi d = 6$

- Verticals Size
- $\phi v = 6$
- Dwl Proj.
- pl = 2.236 ft

Title Inlet Stem wall Job#

Description...

TVA Watts

Dsgnr: PHS

This Wall in File: T:\STRU\PHS\tva\TVA INLET WING WALL.

Retain Pro 9 © 1989 - 2011 Ver: 9.19 8152 Registration #: RP-1190655 Licensed to: CDM - TRACIE VANN

Cantilevered Retaining Wall Design

Code: AASHTO LRFD

Criteria

Retained Height	=	6.25 ft
Wall height above soil	=	1.00 ft
Slope Behind Wall	=	3.00:
Height of Soil over Toe	=	30.00 in
Water height over heel	=	0.0 ft

Soil Data

COII Data			
Allow Soil Bearing	=	2,000.0	psf
Equivalent Fluid Pressur	e Meth	od	
Heel Active Pressure	=		psf/ft
Toe Active Pressure	=	30.0	psf/ft
Passive Pressure	=	300.0	
Soil Density, Heel	=	120.00	pcf
Soil Density, Toe	=	120.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Surcharge Loads

Surcharge Over Heel	=	240.0 psf
NOT Used To Resist	Sliding	& Overturning
Surcharge Over Toe	=	0.0 psf
NOT Used for Sliding	& Over	turnina

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Lateral Load Applied to Stem

Lateral Load	=	0.0 #/ft
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.60

Wind on Exposed Stem = 50.0 psf

Adjacent Footing Load

	-	THE RESERVE OF THE PARTY OF THE
Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Design Summary

Wall Stability Ratios Overturning	=	2.76 OK
Sliding	=	2.54 OK
Total Bearing Loadresultant ecc.	=	8,643 lbs 15.55 in
Soil Pressure @ Toe Soil Pressure @ Heel	=	1,536 psf OK 192 psf OK
Allowable	=	2,000 psf
Soil Pressure Less	Than A	
ACI Factored @ Toe	=	2,151 psf
ACI Factored @ Heel	=	269 psf
Footing Shear @ Toe	=	30.4 psi OK
Footing Shear @ Heel	=	37.0 psi OK
Allowable	=	100.6 psi
Sliding Calcs (Vertical C	Compone	ent NOT Used)

5,232.8 lbs Lateral Sliding Force less 100% Passive Force = -9,854.2 lbs less 100% Friction Force = -3,457.0 lbs 0.0 lbs OK Added Force Req'd 0.0 lbs OKfor 1.5: 1 Stability

=

Load Factors AASHTO LRFD Building Code Dead Load 1.300 2.170 Live Load Earth, H 1.690 1.300 Wind, W Seismic, E 1.000

Top Stem 2nd **Stem Construction** Stem OK 0.00 Stem OK Design Height Above Ftg ft = 3.33 Wall Material Above "Ht" = Concrete Concrete **Thickness** 12.00 12.00 Rebar Size = # 6 # 6 6.00 6.00 Rebar Spacing Rebar Placed at Edge Edge Design Data 0.347 fb/FB + fa/Fa 0.060

Total Force @ Section lbs = 1,601.7 4,778.5 Moment....Actual ft-# = 2,150.3 12,437.1 Moment.....Allowable ft-# = 35,830.5 35,830.5 Shear.....Actual psi = 14.2 41.7 Shear.....Allowable psi = 100.6 100.6 Wall Weight psf = 150.0 150.0 9.63 Rebar Depth 'd' in = 9.63 12.00 LAP SPLICE IF ABOVE 12.00 in = LAP SPLICE IF BELOW 12.00 in= HOOK EMBED INTO FTG in = 9.39

psi=

Lap splice above base reduced by stress ratio

Masonry Data fm

Fs	psi =	
Solid Grouting	=	
Modular Ratio 'n'	=	
Short Term Factor	=	
Equiv. Solid Thick.	=	
Masonry Block Type	=	Medium Weight

= ASD Masonry Design Method

Concrete Data

fc	psi =	4,500.0	4,500.0
Fv	psi =	60.000.0	60.000.0

Title : Inlet Stem wall Job # : TVA Watts

Dsgnr: PHS

Page 149 of 296: _____ Date: JUL 31,2012

Description....

This Wall in File: T:\STRU\PHS\tva\TVA INLET WING WALL.

Retain Pro 9 © 1989 - 2011 Ver: 9.19 8152 Registration #: RP-1190655 RP9.19 Licensed to: CDM - TRACIE VANN

Cantilevered Retaining Wall Design

Code: AASHTO LRFD

Footing D	imensior	is & 5	Stren	gths
Toe Width		=	4	.50 ft
Heel Width		=	5	.50
Total Footing	Width	=	10	.00
Footing Thick	ness	=	14	.00 in
Key Width		=	12	.00 in
Key Depth		=	54	.00 in
Key Distance	from Toe	=	4	.50 ft
		Fy =		000 psi
Footing Conc	rete Density	<i>i</i> =	150	.00 pcf
Min. As %		=	0.00	18
Cover @ Top	2.00	@ E	3tm.=	3.00 in

		Toe	Heel
Factored Pressure	=	2,151	269 psf
Mu' : Upward	=	18,918	5,583 ft-#
Mu': Downward	=	6,733	18,920 ft-#
Mu: Design	=	12,185	13,336 ft-#
Actual 1-Way Shear	=	30.43	36.98 psi
Allow 1-Way Shear	=	100.62	100.62 psi
Toe Reinforcing	=	#6@15.25	in
Heel Reinforcing	=	#6@6.00 i	n
Key Reinforcing	=	#6@0.00 i	n

Other Acceptable Sizes & Spacings

Toe: #4@ 7.00 in, #5@ 10.75 in, #6@ 15.25 in, #7@ 20.75 in, #8@ 27.25 in, #9@ 34 Heel: #4@ 7.00 in, #5@ 10.75 in, #6@ 15.25 in, #7@ 20.75 in, #8@ 27.25 in, #9@ 34 Key: #4@ 12.50 in, #5@ 19.25 in, #6@ 27.25 in, #7@ 37.25 in,

		OV	ERTURNING				RESISTING		
Item	880 0000	Force lbs	Distance ft	Moment ft-#	_	13	Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	3,577.8	2.97	10,634.1	Soil Over Heel	=	3,375.0	7.75	26,156.3
Surcharge over Heel	=	1,605.0	4.46	7,155.6	Sloped Soil Over Heel	=	405.0	8.50	3,442.5
Toe Active Pressure	=				Surcharge Over Heel	=			
Surcharge Over Toe	=				Adjacent Footing Load	=			
Adjacent Footing Load	=				Axial Dead Load on Ste	em =			
Added Lateral Load	=				* Axial Live Load on Ster	m =			
Load @ Stem Above So	oil =	50.0	7.92	395.8	Soil Over Toe	=	1,350.0	2.25	3,037.5
					Surcharge Over Toe	=			
					Stem Weight(s)	=	1,087.5	5.00	5,437.5
					Earth @ Stem Transition	ns=			
Total	=	5,232.8	O.T.M. =	18,185.5	Footing Weight	=	1,750.0	5.00	8,750.0
Resisting/Overturning	ng Rai	tio	=	2.76	Key Weight	=	675.0	5.00	3,375.0
Vertical Loads used	for Sc	il Pressure	= 8,642.5	5 lbs	Vert. Component	=			
Vertical component of a	active	pressure No	OT used for so	oil pressure	То	tal =	8,642.5 I	bs R.M.=	50,198.8
					 Axial live load NOT include resistance, but is included. 				roverturning

DESIGNER NOTES:

Concrete Column

Lic. # : KW-06007264

Concrete Column at inlet weir between box culverts

File: T:\STRU\PHS\tva\Inlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver:6.2.00.0

Licensee : cdm

Code References

Description:

Calculations per ACI 318-05, IBC 2006, CBC 2007, ASCE 7-05 Load Combinations Used: 2006 IBC & ASCE 7-05

General Information

f'c : Concrete 28 day strength	=	4.50 ksi
E =	=	3,122.0 ksi
Density	=	145.0 pcf
β	=	0.8250
fy - Main Rebar	=	60.0 ksi
É - Main Rebar	=	29,000.0 ksi
Allow. Reinforcing Limits	ASTM	A615 Bars Used
Min. Reinf.	=	1.0 %
Max. Reinf.	= .	8.0 %

Load Combination: 2006 IBC & ASCE 7-05

Overall Column Height = 4.0 ft End Fixity Top Pinned, Bottom Fixed

Brace condition for deflection (buckling) along columns:

X-X (width) axis: Fully braced against buckling along X-X Axis

Y-Y (depth) axis :Fully braced against buckling along Y-Y Axis

Column Cross Section

Column Dimensions :12.0in high x 26.0in Wide, Column Edge to Rebar Edge Cover = 2.0in

Column Reinforcing : 4 - #6 bars @ corners,, 2 - #6 bars top & bottom between corner bars

Applied Loads

Column self weight included: 1,256.67 lbs * Dead Load Factor

AXIAL LOADS . . .

Axial Load at 4.0 ft above base, D = 2.20, L = 1.20 k

BENDING LOADS . . .

from beams: Lat. Point Load at 4.0 ft creating My-y, L = 1.20 k

DESIGN SUMMARY Load Combination

Location of max.above base	3.973 ft
Maximum Stress Ratio	0.009807:1
Ratio = $(Pu^2+Mu^2)^.5 / (PhiPn^2+PhiMn^2)^.5$	

Ratio = $(Pu^2 + Mu^2)^{0.5} / (PhiPn^2 + PhiMn^2)^{0.5}$ $Pu = 7.098 \text{ k} \qquad \phi * Pn = 723.39 \text{ k}$

+1.30D+2.170L

Mu Angle = 270.0 deg

Mu at Angle = 0.0 k-ft φMn at Angle = 1.814 k-ft

Pn & Mn values located at Pu-Mu vector intersection with capacity curve

Column Capacities . . .

Pnmax : Nominal Max. Compressive Axial Capacity
Pnmin : Nominal Min. Tension Axial Capacity
Φ Pn, max : Usable Compressive Axial Capacity
Φ Pn, min : Usable Tension Axial Capacity
-137.280 k

Maximum SERVICE Load Reactions . .

 $\begin{array}{cccc} \text{Top along Y-Y} & \text{0.0 k} & \text{Bottom along Y-Y} & \text{0.0 k} \\ \text{Top along X-X} & \text{0.0 k} & \text{Bottom along X-X} & \text{0.0 k} \end{array}$

Maximum SERVICE Load Deflections . . .

Along Y-Y 0.0 in at 0.0 ft above base for load combination :

Along X-X 0.0 in at 0.0 ft above base

Along X-X 0.0 in at 0.0 ft above base for load combination :

General Section Information . $\phi = 0.650$ $\beta = 0.8250$ $\theta = 0.80$ ρ : % Reinforcing 1.128 % Rebar % Ok

Reinforcing Area 3.520 in^2 Concrete Area 3.520 in^2

Licensee : cdm

Concrete Column

File: T:\STRU\PHS\tva\Inlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver:6.2.00.0

Lic. # : KW-06007264

Description:

Concrete Column at inlet weir between box culverts

Governing Load Combination Results

Governing Factored	Dist. from	Axial l	_oad k				Ber	iding Analysis	k-ft		Utilization
Load Combination	base ft	Pu	φ * Pn	δ×	δx * Mux	δУ	δy * Muy	Alpha (deg)	δMu	φMn	Ratio
+1.30D+2.170L	3.97	7.10	723.39	1.000		1.000	-0.00	270.000	0.00	1.81	0.010
Maximum Reactions - Uni	factored							Note: Only no	n-zero rea	actions are	e listed.

Maximum Reactions - Unfactored

	Reaction a	long X-X Axis	Reaction alor	ng Y-Y Axis	Axial Reaction
Load Combination	@ Base	@ Тор	@ Base	@ Тор	@ Base
D Only		k		k	3.457 k
L Only		k	0.000	0.000 k	1.200 k
D+L ´		k	0.000	0.000 k	4.657 k

Maximum Deflections for Load Combinations - Unfactored Loads

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance	
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
L Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
D+L	0.0000 in	0.000 ft	0.000 in	0.000 ft	
THE CONTRACT OF THE CONTRACT O					

Sketches

Looking along X-X Axis

Interaction Diagrams

File: T:\STRU\PHS\tva\Inlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver:6.2.00.0

Lic. #: KW-06007264

Description:

Beam between culverts- vertical load on beam

CODE REFERENCES

Calculations per ACI 318-05, IBC 2006, CBC 2007, ASCE 7-05

Load Combination Set: 2006 IBC & ASCE 7-05

Material Properties

Load Combination 2006 IBC & ASCE 7-05

Cross Section & Reinforcing Details

Rectangular Section, Width = 12.0 in, Height = 27.0 in Span #1 Reinforcing....

2-#6 at 2.750 in from Bottom, from 0.0 to 6.0 ft in this span

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Design OK

Beam self weight calculated and added to loads

Load for Span Number 1

Uniform Load: L = 0.20 k/ft, Tributary Width = 1.0 ft, (Live)

DESIGN SUMMARY

				And the second second second second
Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination	Typical Section 3.927 k-ft 93.752 k-ft +1.30D+2.170L+1.60H	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection	0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio =	0 < 360 0 < 360 999 < 180 999 < 180
Load Combination Location of maximum on span	+1.30D+2.170L+1.60H 3.000ft	Max Opward Total Deflection	0.000 in Ratio =	999<180
Span # where maximum occurs	Span # 1			

Support notation : Far left is #1

Vertical Reactions - Unfactored

vertical Reactions - 0	mactored		cupport notation . Fair lott is #1	
Load Combination	Support 1	Support 2		
Overall MAXimum	1.612	1.613		
D Only	1.012	1.013		
L Only	0.600	0.600		
D+L	1.612	1.613		

Shear Stirrup Requirements

Entire Beam Span Length: Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	Bending Stress Results (k-ft)				
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio			
MAXimum BENDING Envel	оре							
Span # 1 +1.30D+2.170L+1.60H	1	3.000	3.93	93.75	0.04			
Span # 1	1	3.000	3.93	93.75	0.04			

File: T:\STRU\PHS\tva\Inlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver.6.2.00.0 Licensee: cdm

Lic. # : KW-06007264

Description:

Beam between culverts- vertical load on beam

Overall Maximum Deflections - Unfactored Loads

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L	1	0.0002	3.060		0.0000	0.000

Lic. # : KW-06007264

Description : Beam between culverts- horizontal load on beam

File: T:\STRU\PHS\tva\Inlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver:6.2.00.0

Licensee : cdm

CODE REFERENCES

Calculations per ACI 318-05, IBC 2006, CBC 2007, ASCE 7-05

Load Combination Set: 2006 IBC & ASCE 7-05

Material Properties

$f'c$ = $f'c^{1/2} * 7.50$	=	4.50 ksi 503.12 psi	→ Phi Values F	lexui She	
Ψ Density	=	150.0 pcf	β 1	=	0.8250
λ LtWt Factor	=	1.0	. ,		
Elastic Modulus =	,	3,823.68 ksi	Fy - Stirrups		60.0 ksi
fy - Main Rebar = E - Main Rebar =		60.0 ksi 29,000.0 ksi	E - Stirrups Stirrup Bar Size #	=	29,000.0 ksi # 3
E - Main Rebar =		Number of Re	sisting Legs Per Stirrup	=	2

27 in

Load Combination 2006 IBC & ASCE 7-05

Span=6.0 ft

Cross Section & Reinforcing Details

Rectangular Section, Width = 27.0 in, Height = 12.0 in Span #1 Reinforcing....

2-#6 at 2.750 in from Bottom, from 0.0 to 6.0 ft in this span

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Design OK

Load for Span Number 1

Uniform Load: L = 0.20 k/ft, Tributary Width = 1.0 ft, (Live)

DESIGN SUMMARY

Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination Location of maximum on span Span # where maximum occurs	9 0.055: 1 Typical Section 1.953 k-ft 35.618 k-ft +1.30D+2.170L+1.60H 3.000ft Span # 1	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection	0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio =	0 < 360 0 < 360 999 < 180 999 < 180
--	--	--	--	--

Vertical Reactions - Unfactored

Sup	роп	notat	on:	rar	lett i	S#1
	•					

Load Combination	Support 1	Support 2	
Overall MAXimum	0.600	0.600	
L Only	0.600	0.600	
D+L	0.600	0.600	

Shear Stirrup Requirements

Entire Beam Span Length: Vu < PhiVc/2, Reg'd Vs = Not Regd, use stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)		
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio		
MAXimum BENDING Envel Span # 1	ope 1	3.000	1.95	35.62	0.05		
+1.30D+2.170L+1.60H Span # 1	1	3.000	1.95	35.62	0.05		

Concrete Beam

File: T:\STRUIPHS\tva\Inlet Weir Wall Col and Beams.ec6
ENERCALC, INC. 1983-2011, Build:6:12.6:7, Ver.6:2.00.0

Lic. #: KW-06007264

Description: Beam between culverts- horizontal load on beam

Overall Maximum Deflections - Unfactored Loads

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L	1	0.0004	3.060		0.0000	0.000

Ash Pond Breaching Project DETAIL Beam between inlet culverts Check for torsion

Page 158 **bfA21E**9<u>7/31/12</u>

Beam Properties:

 $\gamma_{conc} := 150 pcf$

1 := 6ft

 $f_v := 60 \text{ksi}$

 $f_c := 4.5ksi$

b := 14in

h := 2.25 ft

Self weight of concrete

Length of Beam

Yield stress of steel

Compressive strength of concrete

Width of Beam

Height of Beam

Torsional Check:

$$A_{cp} := b \cdot h = 2.625 \text{ ft}^2$$

$$P_{cp} := 2 \cdot b + 2 \cdot h = 6.833 \text{ ft}$$

$$T_n := .75 \cdot \sqrt{f_c \cdot psi} \cdot \frac{A_{cp}^2}{P_{cp}} = 7.306 \, \text{ft-kip}$$

Area of outside perimeter of concrete

Outside perimeter of concrete

Factored Threshold Torsion (if Tu is less, can neglect torsion effects)

Applied Loads (using AASHTO Load Combinations):

L := 2.17

H := 1.69

guardrail := 50plf

 $h_{gr} := 42in$

surcharge := 120psf

earth := 90pcf

 $M_{guardrail} := L \cdot guardrail \cdot 1 \text{ ft} \cdot \left(h_{gr} + \frac{h}{2} \right) = 0.502 \cdot \text{kip} \cdot \text{ft}$

 $M_{\text{surcharge}} := L \cdot \text{surcharge} \cdot (h - 1 \text{ ft}) \cdot 1 \text{ ft} \cdot \left[\frac{h}{2} - \frac{(h - 1 \text{ ft})}{2} \right] = 0.163 \cdot \text{kip} \cdot \text{ft}$

 $M_{\text{earth}} := \text{H-earth} \cdot (h - 1 \text{ft}) \cdot 1 \text{ft} \cdot \frac{(h - 1 \text{ft})}{2} \cdot \left[\frac{h}{2} - \frac{(h - 1 \text{ft})}{3} \right] = 0.084 \cdot \text{kip} \cdot \text{ft}$

 $T_u := M_{guardrail} + M_{surcharge} + M_{earth} = 0.749 \cdot kip \cdot ft$

 $\frac{T_u}{T_n} = 0.102$

Live Load factor

Lateral Earth Pressure Factor

Load on guardrail (usually 200lbf point load,

50plf used conservatively)

Height of guardrail

Load from vehicle surcharge

Lateral Earch Pressure

Torsional Moment due to guardrail

Torsional moment due to vehicle surcharge

Torsional moment due to lateral earth pressure

Total Factored Applied Torsional Moment

OK if <1, and therefore can neglect torsional effects

CDM Client TVA Job No. 95618-92016 Computed By PHS Date Checked Salar 5400 Glenwood Avenue 8/17/2012 Project Watts Bar Ash Pond Date Suite 300 Detail Buoyancy Calc Page No. Raleigh, NC 27612 **Buoyancy Check For Rectangular Tanks** Author Justin Boggs Date 20-Mar-07 Checked By: File Name: Limitations This program should only be used with a full knowledge of the analysis procedure used in the program. Result of the program is subject to structural engineering evaluation and judgement. This program is for the use of CDM Structural Engineering Staff Only. Parameters Concrete Density (/c) 0.150 kip/ft³ Backfill Soil Density (Ysat) 0.110 kip/ft³ (Typ. Range 100 to 125 pcf) Water Density (/w) 0.0624 kip/ft³ Soil Friction Angle () (Typ. Range 15 to 20 deg) Structure Dimensions 32.33 ft Inside Length (I) Top Slab Thickness (t s) 0 in Height of Walls above 5.25 ft Base Slab (h,) Inside Width (w) 20 ft Height to Grade above Base Slab Thickness (t bs) 0 ft Base Slab (h.) Wall Thickness (t w) 12 in Base Slab Toe Width (I toe) Height to GWL above Base Slab (h w) Cut-off/Interior Wall Thickne 12 in 93.17 ft Cut-off/Interior Walls Interior Wall Height 5 ft Uplift Forces $\left(1+2\frac{t_{w}}{12}\right)\left(w+2\frac{t_{w}}{12}\right)h_{w}=$ Volume of Displaced Water - Above Base Slab Level 3209.9 ft 3 $\left(1+2\frac{l_w+l_{toc}}{12}\right)\left(w+2\frac{l_w+l_{toc}}{12}\right)h_c=$ Volume of Displaced Water - Volume of Base Slab 1017.2 ft3 Volume of Displaced Water - Total 4227.1 ft³ Uplift Force (U) 263.90 kip Resisting Loads Weight of Top Slab (wts) 0.00 kip $\left(1+2\frac{I_{\scriptscriptstyle w}+I_{\scriptscriptstyle tco}}{12}\right)\left(w+2\frac{I_{\scriptscriptstyle w}+I_{\scriptscriptstyle tco}}{12}\right)\frac{I_{b_1}}{12}\gamma_{\scriptscriptstyle c}=$ Weight of Base Slab (wbs) 152.59 kip $\left[\left(1+2\frac{t_{w}+l_{tox}}{12}\right)\left(w+2\frac{t_{w}+l_{tox}}{12}\right)-\left(w\cdot l\right)\right]t_{k}\cdot\gamma_{c}=$ Weight of Exterior Walls (ww) 85.57 kip Weight of Interior Walls (wwi) 69.88 kip $\left[\left(1+2\frac{t_{u}+t_{los}}{12}\right)w+2\frac{t_{u}+t_{los}}{12}\right)-\left(1+2\frac{t_{u}}{12}\right)w+2\frac{t_{u}}{12}\right]\left(t_{u}-t_{u}\right)\gamma_{lost}+\left[t_{u}\left(\gamma_{lost}-\gamma_{u}\right)\right]\right]$ Weight of Soil Above Toe of Base Slab (ws1) 0.00 kip $\left(\frac{1}{2}h_{e}^{2}TAN(\phi)\gamma_{sot} - \frac{1}{2}h_{w}^{2}TAN(\phi)\gamma_{w}\right) \cdot 2 \cdot \left(1 + 2\frac{t_{w}}{12} + w + 2\frac{t_{w}}{12}\right) =$ Weight of Soil in "Pullout Wedges" (ws2) 0.00 kip Weight of Water In structure 61 kip Weight of Structure 308.03 kip Weight of Structure + Soil Area 1 368.58 kip Weight of Structure + Soil Area 1 + Soil Area 2 368.58 kip Factor of Safety Against Uplift OK Weight of Structure / Uplift 1.17 1.1 Weight of Structure + Soil Area 1 / Uplift OK 1.40 1.3 Weight of Structure + Soil Area 1 + Soil Area 2 / Uplift 1.40 1.3 OK

Average Bearing Pressure

Net soil bearing pressure = total structure bearing pressure - existing soil weight

Weight of concrete Bearing Area	(32.33 ft + 2(12	(1/12)) * (20 ft + 2(12 /12)) = 755.26 sf		308.03 · 755.26	<i>kip</i> sf
Concrete per square f	oot weight:	(308.03 * 1000 lb/kip)/(755.26 sf) = 407.85 psf		407.851	psf
Pressure from water in	nside structure:	5.25 ft * (62.43 pcf) = 327.7575 psf		327.758	psf
			TOTAL -	735.608	psf
Weight of soil displace	ed by structure	(5.25 + (14/12))*(110 pcf) = 705.8333333333333 psf		705.833	psf

(735.61 psf - 705.83 psf)= 29.77 psf

30 psf

CLIENT TVA

PROJECT Watts Bar Ash Pond

DETAIL Cast In Place Concrete Design-Outlet PROJECT NO. 92016.2202

COMPUTED BY / DATE CHECKED BY / DATE REVISION NO. / DATE

REVIEWED BY / DATE

Calculation Description:

Cast In Place Concrete Design - Outlet Structure

1.0 Objective

Design all cast in place concrete outlet structure to be able to handle applied loads.

2.0 Procedure

- 1.) Determine loads applied to all walls (wingwall and weir), beams, columns. Including seismic, fluid/earth lateral load, pedestrian live load (on rail), HS-20 Vehicle Live Load surcharge, Soil Vertical Pressure, and Self-weight of
- 2.) Calculate applied moments and shears using AASHTO load combinations.
- 3.) Calculate flexural (moment) and shear capacities of walls (wingwall and weir), beams, and columns.
- 4.) Check overturning, sliding, and bearing for the wingwalls.
- 4.) Check torsion requirements for beams.
- 5.) Check all capacity/applied ratios are less than 1.

3.0 References / Data Sources

- 1.) ASCE 7
- 2.) IBC 2006
- 3.) ACI 318

4.0 Assumptions / Limitations

- 1.) Wingwalls are designed as cantilevered retaining walls at maximum height.
- 2.) Outlet weir structure designed as cantilevered wall, does not meet requirements to design as panel.

5.0 Calculations

5.1 Weir Wall

- Refer to Mathcad spreadsheet "Outlet Weir-Wall" for full design calculations.

5.2 Wingwall

- Refer to RetainPro Output Titled "Outlet Stem Wall" for full design calculations (including stability requirements) and wall diagrams.

5.3 Column Between Box Culverts

- Refer to Enercalc output "Concrete Column at outlet weir between box culverts" for full design calculations and wall

5.4 Beam Above Box Culverts

- Refer to Enercalc output "Beam between culverts - vertical load on beam" and "Beam between culverts - horizontal load on beam" and Mathcad spreadsheet "Beam between outlet culverts" for full design calculations and diagrams.

6.0 Conclusions

- The weir wall and wingwall are 14" thick, with max heights of 10'-2" and reinforcing of #6 @ 6inches on center, each way, each face. The wingwall requires a 5'-8" heel and toe, and a 4'-0" key to meet stability requirements.
- The columns between culverts are also 14" thick, and 26" wide, with #6 @ 6inches on center, each way, each face.
- The beams above the culverts are 14" wide, with reinforcing #6 @ 6inches on center, each way, each face.

CDM Smith

Project Name: TVA

Calculations By: PHS Checked By Project Number: 95618-92016

: Outlet Weir-Wall Date Subject

LIMITATIONS: This program should only be used with a full knowledge of the analysis procedure used in the program. Result of the program is subject to structural engineering evaluation and judgment. This program is for the use of CDM Structural Engineering Staff Only.

CANTILEVER WALL DESIGN - SINGLE DOWEL

This program analyzes the main reinforcement of a cantilever retaining wall which utilizes a standard reinforcement layout. The standard layout is comprised of vertical bars at 6" oc and dowels at 6" oc. The program also checks the shear capacity of the stem. This reinforcement layout is considered to be economical for wall heights less than 12' for water loading and less than 10' for earth loading.

User Input

>> Wall Height - Range: h := 0..10.17 ft

>> Wall Height - Max : hmax := 10.17 ft

>> Wall Thickness hw := 14inches

>> Fluid Density (*) psf $\gamma := 90$

>> Lateral Load Factor LF := 1.69

>> Durability Factor (dowel) S_{D d} := 1.0

>> Durability Factor (vert): S_{D v} := 1.0

(*)- 63 pcf for water, 90 to 120 pcf for earth fill

>> Concrete Strength fc := 4500psi

>> Steel Strength psi $f_{y} := 60000$

>> Concrete Cover inches c := 2.0

>> Vehicle Lateral Live Loa VL := 120 psf

Earth Surcharge Factor ES := 2.17

>> Seismic Lateral Load SL := 40psf

EQ := 1.0

Vehicle Surcharge governs, Seismic not used

Flexural Analysis

Procedure

Revise Dowel and Vertical Bar Sizes such that Moment Capacity (φ**Mn**) > Factored Moment (Mu). Note: Std Dowel Spacing is 6" and Vertical Spacing is 6".

Select Reinforcement Sizes

>> Dowel Size / Area
$$\phi d := 6$$
 Ad := $(\phi d \cdot 0.125)^2 \cdot \frac{\pi}{4} \cdot 2$ Ad = 0.884 sq.in/ft

>> Vert. Size
$$\phi v := 6$$
 Av := $(\phi v \cdot 0.125)^2 \cdot \frac{\pi}{4} \cdot 2$ Av = 0.884 sq.in/ft

Effective Depth Dowels :
$$dd := (hw - c) - (0.5 \cdot \phi d \cdot .125)$$

$$dd = 11.625$$
 inches

Effective Depth Verticals :
$$dv := (hw - c) - (0.5 \cdot \phi v \cdot .125)$$

$$dv = 11.625$$
 inches

Check Min. Steel Ratio

Steel Ratio Dowels:
$$\rho d := \frac{Ad}{(12 \cdot dd)}$$
 $\rho d = 0.00633$ $Cd := if \left(\rho d \ge 0.003, 1, \frac{1}{1.33} \right)$

Steel Ratio Verticals:
$$\rho v := \frac{Av}{(12 \cdot dv)}$$
 $\rho v = 0.00633$ $Cv := if \left(\rho v \ge 0.003, 1, \frac{1}{1.33}\right)$

$$Cd = 1$$
 $Cv = 1$

Moment Capacity

Moment Capacity -Dowels
$$\phi Md(h) := \frac{0.9 \cdot Ad \cdot fy}{12000} \cdot \left[dv - \frac{Ad \cdot fy}{2 \cdot 12 \cdot (0.85 \cdot fc)} \right] \cdot Cd$$
 kip-ft (Eqn 3)

$$\phi$$
Md(1) = 43.926 kip-ft

Moment Capacity - Verticals
$$\phi Mv(h) := \frac{0.9 \cdot Av \cdot fy}{12000} \cdot \left[dv - \frac{Av \cdot fy}{2 \cdot 12 \cdot (0.85 \cdot fc)} \right] \cdot Cv$$
 kip-ft (Eqn 4)
$$\phi Mv(1) = 43.926 \text{ kip-ft}$$

Redefine Moment Capacity of Verticals as a scalar value (\$\phi Mv1)

Moment Capacity - Verticals
$$\phi Mv1 := \phi Mv(1)$$
 kip-ft (Eqn 5)

Substitute Eqn 5 into Eqn 1 to calculate h (h1) the point at which moment capacity of verticals equal to applied Factored Moment

$$h1 := \left[\frac{\phi M v 1 \cdot 1000}{\frac{1}{6} \cdot \left(LF \cdot S_{D_{-}v} \cdot \gamma \right) + \frac{1}{2} \left(VL \cdot ES \cdot S_{D_{-}v} \right)} \right]^{0.33333}$$

$$h1 = 6.561 \text{ ft}$$

Projection Length of Loaded Face Dowels:
$$pl := hmax - h1 + \frac{dv}{12}$$

$$pl = 4.578$$
 ft

Ld = 2.236 ft

Dowel Development Length (Per ACI-318 12.2.2)

$$Ld := if \left[\varphi d > 6, 0.05 \cdot \varphi d \cdot 0.125 \cdot \frac{fy}{\sqrt{fc}} \cdot \left(\frac{1}{12} \right), 0.04 \cdot \varphi d \cdot 0.125 \cdot \frac{fy}{\sqrt{fc}} \cdot \left(\frac{1}{12} \right) \right]$$

$$pl := (if(Ld > pl, Ld, pl))$$

$$pl = 4.578$$

Moments and Shears

$$Mu_d(h) := \frac{1}{6 \cdot 1000} \cdot \left(LF \cdot S_{D_d} \cdot \gamma \cdot h^3 \right) + \frac{1}{2 \cdot 1000} \left(VL \cdot ES \cdot h^2 \right)$$

Max. Factored Moment (dowel): $Mu_d(hmax) = 40.131$

$$Mu_d(hmax) = 40.131$$

$$Mu_v(h) := \frac{1}{6 \cdot 1000} \cdot \left(LF \cdot S_{D_v} \cdot \gamma \cdot h^3 \right) + \frac{1}{2 \cdot 1000} \left(VL \cdot ES \cdot h^2 \right)$$

$$Mu_v \left(h1 - \frac{dv}{12} \right) = 8.504$$

$$Vu(h) := \frac{1}{2 \cdot 1000} \cdot \left(LF \cdot \gamma \cdot h^2 \right) + \frac{1}{1000} (VL \cdot ES \cdot h)$$

$$Vu(hmax) = 10.514$$

Check Moment Capacities

$$\phi$$
Md(hmax) = 43.926

Moment Capacity - Verticals at Dowel Cutoff Poin
$$\phi Mv \left(h1 - \frac{dv}{12}\right) = 43.926$$
 kip-ft

$$\frac{Mu_d(hmax)}{\phi Md(hmax)} = 0.914$$

$$\frac{\text{Mu}_{v}\left(\text{h1} - \frac{\text{dv}}{12}\right)}{\text{\phi Mv1}} = 0.194 \text{ OK if } \leq 1$$

$$\Phi Vn := \frac{0.85 \cdot 12 \cdot dd \cdot 2 \cdot \sqrt{fc}}{1000}$$

$$\phi Vn = 15.909 \text{ kips}$$

$$\frac{Vu(hmax)}{\phi Vn} = 0.661$$

Following variables are defined to facilitate graphing

- Variable change
- ha(h) := hmax h
- Dowel Proj. Range Variable
- hdl := 0, 0.1..pl
- pl = 4.578

Design Summary

- Wall Thickness
- hw = 14 inches
- Dowel Size .
- $\phi d = 6$

- Verticals Size
- $\phi v = 6$
- Dwl Proj.
- pl = 4.578

ft

Outlet Stem wall

Description....

TVA Watts

Dsgnr: PHS

Page 165 of 249e:

Date: JUL 31,2012

This Wall in File: T:\STRU\PHS\tva\tva outlet wing wall.rp5

Retain Pro 9 © 1989 - 2011 Ver: 9.19 8152 Registration #: RP-1190655 Licensed to: CDM - TRACIE VANN

Cantilevered Retaining Wall Design

Code: AASHTO LRFD

Criteria

•	Retained Height	=	9.17 ft
	Wall height above soil	=	1.00 ft
	Slope Behind Wall	=	3.00 : 1
	Height of Soil over Toe	=	30.00 in
	Water height over heel	=	0.0 ft

Soil Data

LONGING MADE INTO A MADE A SOLIT A		*	
Allow Soil Bearing	=	2,000.0	psf
Equivalent Fluid Pressure	e Meth	od	
Heel Active Pressure	=	90.0	psf/ft
Toe Active Pressure	=	30.0	psf/ft
Passive Pressure	=	300.0	
Soil Density, Heel	=	120.00	pcf
Soil Density, Toe	=	120.00	pcf
Footing Soil Friction	=	0.400	1
Soil height to ignore for passive pressure	=	12.00	in

Surcharge Loads

Surcharge Over Heel	=	240.0 psf
NOT Used To Resist	Sliding	& Overturning
Surcharge Over Toe	= -	0.0 psf
NOT Used for Sliding	& Over	turnina

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Lateral Load Applied to Stem

Lateral Load	=	0.0 #/ft
Height to Top	=	0.00 ft
Height to Bottom	=	0.00 ft
The above lateral load has been increased by a factor of		1.60

Wind on Exposed Stem = 50.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Design Summary

TATION STREET, VOLUME TO A STREET, STR	CONTRACTOR OF THE PARTY OF THE	THE STATE OF THE S
Wall Stability Ratios Overturning Sliding	=	2.44 OK 1.56 OK
Total Bearing Loadresultant ecc.	=	13,247 lbs 20.92 in
Soil Pressure @ Toe Soil Pressure @ Heel	=	1,946 psf OK 173 psf OK
Allowable Soil Pressure Less	= Than	2,000 psf
ACI Factored @ Toe ACI Factored @ Heel	=	2,724 psf 242 psf
Footing Shear @ Toe	=	56.9 psi OK
Footing Shear @ Heel	=	63.4 psi OK
Allowable	=	100.6 psi
Sliding Calcs (Vertical C	Compo	onent NOT Used)

Lateral Sliding Force = 8,976.5 lbs less 100% Passive Force = - 8,666.7 lbs

less 100% Friction Force = - 5,298.7 lbs

Added Force Req'd

....for 1.5: 1 Stability

0.0 lbs OK

0.0 lbs OK

Load Factors	
Building Code	AASHTO LRFD
Dead Load	1.300
Live Load	2.170
Earth, H	1.690
Wind, W	1.300
Seismic, E	1.000

T	op Stem	2nd	
ft =	Stem OK 3.33	Stem OK 0.00	
=	Concrete	Concrete	
=	14.00	14.00	
=	# 6	# 6	
=	6.00	6.00	
=	Edge	Edge	
=	0.243	0.750	
)s =	4,435.3	9,091.0	
#=	10,648.7	32,833.7	
# =	43,750.5	43,750.5	
si=	32.1	65.5	
si=	100.6	100.6	1
sf=	175.0	175.0	
in =	11.63	11.63	
in =	12.00	15.71	
in =	12.00		
in =		9.39	
֡	ff = = = = = = = = = = = = = = = = = =	ft = 3.33 = Concrete = 14.00 = # 6 = 6.00 = Edge = 0.243 as = 4,435.3 # = 10,648.7 # = 43,750.5 si = 32.1 si = 100.6 sf = 175.0 in = 11.63 in = 12.00 in = 12.00	Stem OK 3.33 0.00 = Concrete 14.00 14.00 = # 6 # 6 = 6.00 6.00 = Edge Edge = 0.243 0.750 = 10,648.7 32,833.7 # 43,750.5 31 32.1 65.5 si 32.1 65.5 si 100.6 100.6 sf 175.0 175.0 in 11.63 11.63 in 12.00 15.71 in 12.00

Lap splice above base reduced by stress ratio

wasonry	Data
fm	

Fs	psi =			
Solid Grouting	=			
Modular Ratio 'n'	=			
Short Term Factor	=			
Equiv. Solid Thick.	=			
Masonry Block Type	=	Medium We	eight	
Masonry Design Method	=	ASD	1-7	
Concrete Data				
fc	psi =	4,500.0	4,500.0	
Fy	psi =	60,000.0	60,000.0	

psi =

Outlet Stem wall Job# : TVA Watts

Description....

Dsgnr: PHS

Page 166 of P24999: ______ Date: JUL 31,2012

This Wall in File: T:\STRU\PHS\tva\tva outlet wing wall.rp5

Retain Pro 9 © 1989 - 2011 Ver: 9.19 8152 Registration #: RP-1190655 Licensed to: CDM - TRACIE VANN

Cantilevered Retaining Wall Design

Code: AASHTO LRFD

Footing Din	nension	is & S	Stren	gths	
Toe Width		_ =	5	.67 ft	¥
Heel Width		=	6	.83	
Total Footing W	Vidth	= [12	.50	
Footing Thickne	ess	=	14.	00 in	
Key Width		=	14.	00 in	
Key Depth		=	48.	00 in	
Key Distance fr	om Toe	=	5.	67 ft	
fc = 4,50	0 psi	Fy =		00 psi	
Footing Concre	te Density	<i>i</i> =	150.	00 pcf	
Min. As %		=	0.00	18	
Cover @ Top	2.00	@ E	3tm.=	3.00 in	

		Toe	Heel	
Factored Pressure	=	2,724	242	psf
Mu' : Upward	=	37,758	9,911	ft-#
Mu': Downward	=	10,690	38,577	ft-#
Mu: Design	=	27,068	28,666	ft-#
Actual 1-Way Shear	=	56.94	63.44	psi
Allow 1-Way Shear	=	100.62	100.62	psi
Toe Reinforcing	=	#6@9.00 in		
Heel Reinforcing	=	#6@6.00 in		
Key Reinforcing	=	#6@0.00 in		

Other Acceptable Sizes & Spacings

Toe: #4@ 4.25 in, #5@ 6.50 in, #6@ 9.00 in, #7@ 12.25 in, #8@ 16.00 in, #9@ 20.2 Heel: #4@ 4.25 in, #5@ 6.50 in, #6@ 9.25 in, #7@ 12.75 in, #8@ 16.75 in, #9@ 21.0

Force lbs 6,725.9	Distance ft	Moment ft-#			Force	SISTING	
6,725.9					lbs	Distance ft	Moment ft-#
	4.08	27,409.2	Soil Over Heel	=	6,235.6	9.67	60,298.3
2,200.6	6.11	13,451.8	Sloped Soil Over Heel	=	642.2	10.61	6,816.8
			Surcharge Over Heel	=			
			Adjacent Footing Load	=			
			Axial Dead Load on Ste	m =			
			* Axial Live Load on Sten	n =			
50.0	10.84	541.8	Soil Over Toe	=	1,701.0	2.84	4,822.3
			Surcharge Over Toe	=			
			Stem Weight(s)	=	1,779.8	6.25	11,129.4
	_		Earth @ Stem Transitio	ns=			
8,976.5	O.T.M. =	41,402.9	Footing Weight	=	2,188.1	6.25	13,679.2
tio	=	2.44	Key Weight	=	700.0	6.25	4,377.3
oil Pressure	= 13,246.7	' lbs	Vert. Component	=			
pressure No	OT used for so	oil pressure	Tot	tal =	13,246.7 lb	s R.M.=	101,123.3
(8,976.5 atio oil Pressure	8,976.5 O.T.M. = atio = 0il Pressure = 13,246.7	8,976.5 O.T.M. = 41,402.9 atio = 2.44	Adjacent Footing Load Axial Dead Load on Ster * Axial Live Load on Ster * Axial Live Load on Ster * Soil Over Toe Surcharge Over Toe Stem Weight(s) Earth @ Stem Transitio Footing Weight * Axial Live Load on Ster * Over Toe Stem Weight(s) Earth @ Stem Transitio Footing Weight * Key Weight Vert. Component * Pressure NOT used for soil pressure * Total Component * Axial Dead Load on Ster * Axial Live Lo	Adjacent Footing Load = Axial Dead Load on Stem = * Axial Live Load on Stem = * Axial Live Load on Stem = * Soil Over Toe = Surcharge Over Toe = Stem Weight(s) = Earth @ Stem Transitions = Footing Weight = volume oil Pressure = 13,246.7 lbs Pressure NOT used for soil pressure Adjacent Footing Load = Axial Dead Load on Stem = * Axial Live Load on Stem = * Axial Live Load on Stem = * Axial Live Load on Stem = * Axial Live Load on Stem = * Soil Over Toe = Stem Weight(s) = Earth @ Stem Transitions = Footing Weight = Vert. Component = Total =	Adjacent Footing Load = Axial Dead Load on Stem = * Axial Live Load on Stem = * Axial Live Load on Stem = * Soil Over Toe = 1,701.0 Surcharge Over Toe = Stem Weight(s) = 1,779.8 Earth @ Stem Transitions = Footing Weight = 2,188.1 Key Weight = 700.0 oil Pressure = 13,246.7 lbs Pressure NOT used for soil pressure Adjacent Footing Load = Axial Dead Load on Stem = * Axial Live Load on Stem = \$ 1,701.0 Surcharge Over Toe = Stem Weight(s) = 1,779.8 Earth @ Stem Transitions = Footing Weight = 700.0 Vert. Component = * Total = 13,246.7 lb	Adjacent Footing Load = Axial Dead Load on Stem = * Axial Live Load on Stem = * Axial Live Load on Stem = * Axial Live Load on Stem = 50.0 10.84 541.8 Soil Over Toe = 1,701.0 2.84 Surcharge Over Toe = Stem Weight(s) = 1,779.8 6.25 Earth @ Stem Transitions = 8,976.5 O.T.M. = 41,402.9 Footing Weight = 2,188.1 6.25 Atio = 2.44 Key Weight = 700.0 6.25 Oil Pressure = 13,246.7 lbs Vert. Component =

DESIGNER NOTES:

Concrete Column

File: T:\STRU\PHS\tva\Outlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver:6.2.00.0

Lic. # : KW-06007264

Description:

Concrete Column at outlet weir between box culverts

Code References

Calculations per ACI 318-05, IBC 2006, CBC 2007, ASCE 7-05

Load Combinations Used: 2006 IBC & ASCE 7-05

General Information

f'c : Concrete 28 day strength	=	4.50 ksi
E =	=	3,122.0 ksi
Density	=	145.0 pcf
β	=	0.8250
fy - Main Rebar	=	60.0 ksi
É - Main Rebar	=	29,000.0 ksi
Allow. Reinforcing Limits	ASTM	A615 Bars Used
Min. Reinf.	=	1.0 %
Max. Reinf.	=	8.0 %

Load Combination :2006 IBC & ASCE 7-05

Overall Column Height

5.0 ft Top Pinned, Bottom Fixed **End Fixity**

Brace condition for deflection (buckling) along columns:

X-X (width) axis: Fully braced against buckling along X-X Axis Y-Y (depth) axis: Fully braced against buckling along Y-Y Axis

Column Cross Section

Column Dimensions :14.0in high x 26.0in Wide, Column Edge to Rebar Edge Cover = 2.0in

Column Reinforcing: 4 - #6 bars @ corners,, 2.0 - #6 bars top & bottom between corner bars

Entered loads are factored per load combinations specified by user.

Applied Loads

Column self weight included: 1,832.64 lbs * Dead Load Factor

AXIAL LOADS . . .

Axial Load at 5.0 ft above base, D = 2.20, L = 1.20 k

BENDING LOADS . . .

from beams: Lat. Point Load at 4.0 ft creating My-y, L = 1.20 k

+1.30D+2.170L

DESIGN SUMMARY Load Combination

Location of ma	x.above base		4.966 ft
Maximum Stres Ratio = (Pu^2+	s Ratio Mu^2)^.5 / (PhiPn^2	?+PhiMn^2)^.5	0.009832 : 1
Pu =	7.846 k	φ * Pn =	805.49 k
Mu-x =	0.0 k-ft	φ * Mn-x =	0.0 k-ft
Mu-y =	1.828 k-ft	Φ * Mn-y =	0.0 k-ft
Mu Angle =	90.0 deg		

185.709 k-ft 1.828 k-ft φMn at Angle = Mu at Angle =

Pn & Mn values located at Pu-Mu vector intersection with capacity curve

Column Capacities . . .

Pnmax: Nominal Max. Compressive Axial Capacity	1,590.04 k
Pnmin: Nominal Min. Tension Axial Capacity	-211.20 k
φ Pn, max : Usable Compressive Axial Capacity	826.82 k
Pn. min : Usable Tension Axial Capacity	-137,280 k

Maximum SERVICE Load Reactions . .

Top along Y-Y 0.8448 k Bottom along Y-Y 0.3552 k 0.0 k Top along X-X 0.0 k Bottom along X-X

Maximum SERVICE Load Deflections . . .

Along Y-Y 0.0 in at 0.0 ft above base for load combination: .0000270in at 3.255 ft above base Along X-X for load combination: L Only

General Section Information . $\phi = 0.650$ 0.80 $\beta = 0.8250$ p: % Reinforcing 0.9670 % Rebar < Min of 1.0 %

Reinforcing Area 3.520 in^2 Concrete Area 364.0 in^2

Concrete Column

File: T:\STRU\PHS\tva\Outlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver:6.2.00.0

Lic. # : KW-06007264

Description : Co

Concrete Column at outlet weir between box culverts

Governing Load Combination Results

Governing Factored	Dist. from	Dist. from Axial I		Bending Analysis k-ft							Utilization
Load Combination	base ft	Pu	φ * Pn	δ×	δx * Mux	δ ^y δy * Muy Alpha (deg) δ Mu	φMn	Ratio			
+1.30D+2.170L	4.97	7.85	805.49	1.000		1.000	1.83	90.000	1.83	185.71	0.010

Maximum Reactions - Unfactored

Note: Only non-zero reactions are listed.

	Reaction a	ong X-X Axis	Reaction alor	ng Y-Y Axis	Axial Reaction
Load Combination	@ Base	@ Тор	@ Base	@ Тор	@ Base
D Only		k		k	4.033 k
L Only		k	0.355	0.845 k	1.200 k
D+L		k	0.355	0.845 k	5.233 k

Maximum Deflections for Load Combinations - Unfactored Loads

Load Combination	Max. X-X Deflecti	Max. X-X Deflection			Max. Y-Y Deflection		Distance		
D Only	0.0000 in		0.000	ft	0.000	in	0.000	ft	
L Only	0.0000 in		3.255	ft	0.000	in	0.000	ft	
D+L	0.0000 in		3.255	ft	0.000	in	0.000	ft	

Sketches

Interaction Diagrams

Licensee: cdm

Concrete Beam

File: T:\STRU\PHS\tva\Outlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver:6.2.00.0

Lic. #: KW-06007264

Description:

Beam between culverts- vertical load on beam

CODE REFERENCES

Calculations per ACI 318-05, IBC 2006, CBC 2007, ASCE 7-05

Load Combination Set: 2006 IBC & ASCE 7-05

Material Properties

Load Combination 2006 IBC & ASCE 7-05

Cross Section & Reinforcing Details

Rectangular Section, Width = 14.0 in, Height = 27.0 in

Span #1 Reinforcing....

2#6 at 2.750 in from Bottom, from 0.0 to 6.0 ft in this span

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Design OK

Beam self weight calculated and added to loads

Load for Span Number 1

Uniform Load: L = 0.20 k/ft, Tributary Width = 1.0 ft, (Live)

DESIGN SUMMARY

Maximum Bending Stress Ratio = 0.045: 1 Maximum Deflection Section used for this span Typical Section Max Downward L+Lr+S Deflection 0.000 in Ratio = 0.000 in		
Mu : Applied 4.256 k-ft Max Upward L+Lr+S Deflection Mn * Phi : Allowable 94.078 k-ft Max Downward Total Deflection 0.000 in Ratio = 9900	or this span Typical Section Max Downward L+Lr+S Deflection 0.000 in Ratio = 0.000 in Ratio	0 <360 0 <360 9 <180 9 <180

Support notation: Far left is #1

Vertical Reactions - Unfactored

Tortiour Houdellorio	Ollidotolod		
Load Combination	Support 1	Support 2	
Overall MAXimum	1.781	1.781	
D Only	1.181	1.181	
L Only	0.600	0.600	
D+L	1.781	1.781	

Shear Stirrup Requirements

Entire Beam Span Length: Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination	I Combination		Bendin	g Stress Result	s (k-ft)		
Segment Length	Span #	Location (ft) in Span	Mu : Max	Phi*Mnx	Stress Ratio		
MAXimum BENDING Envel	оре						
Span # 1 +1,30D+2,170L+1,60H	1	3.000	4.26	94.08	0.05	-	
Span # 1	1	3.000	4.26	94.08	0.05		

File: T:\STRU\PHS\tva\Outlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver.6.2.00.0 Licensee: cdm

Lic. #: KW-06007264

Description:

Beam between culverts- vertical load on beam

Overall Maximum Deflections - Unfactored Loads

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L	1	0.0002	2.940		0.0000	0.000

File: T:\STRU\PHS\tva\Outlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver.6.2.00.0 Licensee: cdm

Lic. # : KW-06007264

Description:

Beam between culverts- horizontal load on beam

CODE REFERENCES

Calculations per ACI 318-05, IBC 2006, CBC 2007, ASCE 7-05

Load Combination Set: 2006 IBC & ASCE 7-05

Material Properties

Load Combination 2006 IBC & ASCE 7-05

Span=6.0 ft

Cross Section & Reinforcing Details

Rectangular Section, Width = 27.0 in, Height = 14.0 in

Span #1 Reinforcing....

2-#6 at 2.750 in from Bottom, from 0.0 to 6.0 ft in this span

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Design OK

Load for Span Number 1

Uniform Load: L = 0.20 k/ft, Tributary Width = 1.0 ft, (Live)

DESIGN SUMMARY

Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable	= 0.045 : 1 Typical Section 1.953 k-ft 43.538 k-ft	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection	0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio =	0 < 360 0 < 360 999 < 180
Load Combination Location of maximum on span Span # where maximum occurs	+1.30D+2.170L+1.60H 3.000 ft Span # 1	Max Upward Total Deflection	0.000 in Ratio =	999<180

Support notation: Far left is #1

Vertical Reactions - Unfactored

Load Combination	Support 1	Support 2	
Overall MAXimum	0.600	0.600	
L Only	0.600	0.600	
D#I	0.600	0.600	

Shear Stirrup Requirements

Entire Beam Span Length: Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)	
Segment Length Span	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio	
MAXimum BENDING Envel Span # 1	ope 1	3.000	1.95	43.54	0.04	
+1.30D+2.170L+1.60H		3.000	1.55	40.04		
Span # 1	1	3.000	1.95	43.54	0.04	

File: T:\STRU\PHS\tva\Outlet Weir Wall Col and Beams.ec6 ENERCALC, INC. 1983-2011, Build:6.12.6.7, Ver.6.2.00.0 Licensee: cdm

Lic. # : KW-06007264

Description:

Beam between culverts- horizontal load on beam

Overall Maximum Deflections - Unfactored Loads

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L	1	0.0002	3.060		0.0000	0.000

PROJECT Ash Pond Breaching Project DETAIL Beam between outlet culverts DATE CHECKED

Torsion Cheak

Beam Properties:

 $\gamma_{conc} := 150 pcf$

l := 6ft

 $f_v := 60 \text{ksi}$

 $f_c := 4.5 \text{ksi}$

b := 14in

h := 2.25 ft

Self weight of concrete

Length of Beam

Yield stress of steel

Compressive strength of concrete

Width of Beam

Height of Beam

Torsional Check:

 $A_{cp} := b \cdot h = 2.625 \, ft^2$

 $P_{cp} := 2 \cdot b + 2 \cdot h = 6.833 \, ft$

 $T_n := .75 \cdot \sqrt{f_c \cdot psi} \cdot \frac{A_{cp}^2}{P_{cp}} = 7.306 \, \text{ft-kip}$

Area of outside perimeter of concrete

Outside perimeter of concrete

Factored Threshold Torsion (if Tu is less, can neglect torsion effects)

Applied Loads (using AASHTO Load Combinations):

L := 2.17

H := 1.69

guardrail := 50plf

 $h_{gr} := 42in$

surcharge := 120psf

earth := 90pcf

 $M_{guardrail} := L \cdot guardrail \cdot l \cdot ft \cdot \left(h_{gr} + \frac{h}{2}\right) = 0.502 \cdot kip \cdot ft$

 $M_{\text{surcharge}} := L \cdot \text{surcharge} \cdot (h - 1 \text{ ft}) \cdot 1 \text{ ft} \cdot \left[\frac{h}{2} - \frac{(h - 1 \text{ ft})}{2} \right] = 0.163 \cdot \text{kip} \cdot \text{ft}$

 $M_{\text{earth}} := \text{H-earth-}(h-1\text{ft})\cdot 1\text{ft}\cdot \frac{(h-1\text{ft})}{2}\cdot \left[\frac{h}{2} - \frac{(h-1\text{ft})}{3}\right] = 0.084 \cdot \text{kip-ft}$

 $T_u := M_{guardrail} + M_{surcharge} + M_{earth} = 0.749 \cdot kip \cdot ft$

 $\frac{T_u}{T_n} = 0.102$

Live Load factor

Lateral Earth Pressure Factor

Load on guardrail (usually 200lbf point load,

50plf used conservatively)

Height of guardrail

Load from vehicle surcharge

Lateral Earch Pressure

Torsional Moment due to guardrail

Torsional moment due to vehicle surcharge

Torsional moment due to lateral earth pressure

Total Factored Applied Torsional Moment

OK if <1, and therefore can neglect torsional effects

COMPUTED BY / DATE
CHECKED BY / DATE
REVISION NO. / DATE
REVIEWED BY / DATE

- 08/16/12
- 08/16/12
- 08/16/12
- 08/16/12
- 08/16/12
- 08/16/12

0			-		
('3	CITI	ation	100	Crin	tion

Precast Box Culvert Design for Inlet and Outlet

1.0 Objective

Design inlet and outlet precast box culverts for use by the precaster.

2.0 Procedure

- 1.) Determine loads applied to all walls and slabs. Including fluid/earth lateral load, pedestrian live load (on rail), HS-
- 20 Vehicle Live Load surcharge, Soil Vertical Pressure, and Self-weight of concrete.
- 2.) Calculate applied moments and shears using AASHTO load combinations.
- 3.) Calculate flexural (moment) and shear capacities of walls (wingwall and weir), beams, and columns.
- 4.) Check all capacity/applied ratios are less than 1.

3.0 References / Data Sources

- 1.) ASCE 7
- 2.) IBC 2006
- 3.) ACI 318

4.0 Assumptions / Limitations

1.) Concrete strength increased in design for precast concrete.

5.0 Calculations

5.1 Inlet Side Box Culverts

- Refer to FDOT Box Culvert Analysis Program design for the "6x4 under 13.5' fill" Culverts: Dimensions and Material Properties, Box and Headwall Load Cases, Box Reinforcement Design, and Bouyancy Check for Rectangular Tanks

5.2 Outlet Side Box Culverts

- Refer to FDOT Box Culvert Analysis Program design for the "6x5 under 13.5' fill" Culverts: Dimensions and Material Properties, Box and Headwall Load Cases, Box Reinforcement Design, and Bouyancy Check for Rectangular Tanks

6.0 Conclusions

 $\hbox{- The culverts have 8 inch walls and slabs with reinforcing of $\#5@6$ inches on center, each way, each face, top and bottom.}\\$

Box Culvert Analysis Program

Dimensions and Material Properties

© 2002 Florida Department of Transportation

This program uses design values from the CurrentDataFile in use. It is generally not necessary to save the modified Mathcad worksheet since all the design values are saved in the CurrentDataFile.

Reference:C:\FDOT Structures\Programs\LRFDBoxCulvertV3.2\ReadData.xmcd(R)

data file currently in use: (verify your intended file)

CurrentDataFile = "\Data Files\6X4 w 13.5 soil.dat"

Only change new values. Calculate Worksheet (CTRL+F9) twice to save/view new values.. If current data values are correct, leave (XX) in the newData field.

Project = "6' x 4' under 13.5' fill"

newProject := "6' x 4' under 13.5' fill"

DesignedBy = "KMF"

newDesignedBy := "XX"

CheckedBy = "DLF"

newCheckedBy := "XX"

Comment = "two cell, no box skew, wingwalls parallel to traffic"

newComment := "XX"

Design Parameters

This program analyzes a one foot wide cross section $b_w = 1 \text{ ft}$

Geometry and Box Dimensions to enter and/or change data values, change XX-dimension values to the desired values

opening width of cell	$W_c = 6 \text{ ft}$	$newW_c := \mathbf{XX} \cdot ft$	opening height of cell	$H_c = 4 \text{ ft}$	$newH_c := 4 \cdot ft$
top slab thickness, \ (8 inch min.)	$T_t = 8 \cdot in$	$newT_t := \mathbf{XX} \cdot in$	bottom slab thickness, (8 inch min.)	$T_b = 8 \cdot in$	$newT_b := \mathbf{XX} \cdot in$
exterior wall thickness, (8 inch min.)	$T_w = 8 \cdot in$	$newT_w := XX \cdot in$	interior wall thickness, (8 inch min.)	$T_i = 8 \cdot in$	$newT_i \coloneqq \boldsymbol{XX} {\cdot} in$
length of culvert	$L_c = 100 \text{ ft}$	$newL_c := \mathbf{XX} \cdot ft$	number of cells	NoOfCells = 1	newNoOfCells := XX
along centerline distance from top of opening to surface	Depth = 14.17 ft	$newDepth := \mathbf{XX} \cdot ft$	water head at top of box opening $(typically = 0.0)$	Head = 14.17 ft	$newHead := \mathbf{XX} \cdot ft$
extension type 0 - new box (no extension 1- left extension	n) newExtens	sion := XX		<u>otes:</u> is added automatic nd corresponding	

1- left extension

2 - right extension

Extension = 0

ength of culvert and corresponding rebar lengths for splicing to existing culvert per Index No. 289 2. When switching extension types, extensionspecific variables require new user inputs (e.g. H_{start}, H_{end}, & L_{ww})

index for number of headwalls

iwbeg := if(Extension $\neq 2,0,1$)

iwend := if(Extension $\neq 1, 1, 0$)

iw := iwbeg.. iwend

Change all Group values (color) and/or change individual values (white). (Use Math - Calculate Worksheet to update)

0 1

Left & right

Headwall

(headwall exceeding 2 feet above the top slab is

beyond the intent of this program) height

$$H_{hw} = \begin{pmatrix} 24 \\ 24 \end{pmatrix} \cdot in$$

$$newH_{hw} := XX \cdot in$$

$$newH_{hw.left} := \textbf{XX} \cdot in$$

$$newH_{hw.right} := \textbf{XX} \cdot in$$

$$\mathbf{B}_{\text{hw}} = \begin{pmatrix} 12 \\ 12 \end{pmatrix} \cdot \text{in}$$

$$newB_{hw} := XX \cdot in$$

$$newB_{hw.left} := \textbf{XX} \cdot in$$

$$newB_{hw.right} := \textbf{XX} \cdot in$$

D-

CurrentDataFile = "\Data Files\6X4 w 13.5 soil.dat"

box end skew (enter zero if opposite end of extension)

$$Skew_{box} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot deg$$

$$Skew_{box} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot deg \qquad newSkew_{box} := \begin{pmatrix} \mathbf{XX} \cdot deg \\ \mathbf{XX} \cdot deg \end{pmatrix} \quad \begin{array}{l} left \\ right \end{array}$$

depth of soil above top slab

SoilHeight := if (newDepth = $XX \cdot ft$, Depth, newDepth) - if (newT_t = $XX \cdot in$, T_t, newT_t)

SoilHeight = 13.5 ft

Wingwall Geometry

ibeg := if(Extension $\neq 2,0,2$)

iend := if(Extension $\neq 1,3,1$)

i := ibeg.. iend

Notes:

Box skew angles measured from square, counterclockwise positive. Wingwall angles θ measured from box wall to wingwall. (allowable range for θ is 45 to 225 degrees). EmbankmentSlope is the slope of the soil below the top of the wingwall and used to calculate the wingwall length. SideSlope is the slope of the soil that goes downward perpendicular to the top of the headwall. If there are two headwalls and they are not parallel, default $\theta_{\text{sideSlope}}$ has to be overridden using θ_{user} .

EmbankmentSlope :=
$$\frac{1}{2}$$
 rise run

SideSlope :=
$$\frac{1}{2}$$
 rise run

$$H_{\text{start.default}} := \max(H_{\text{hw}}) + if[(\text{newH}_{\text{c}} = XX \cdot ft), H_{\text{c}}, \text{newH}_{\text{c}}]$$
 $H_{\text{start.default}} = 6 ft$

Program current values

$$i = \frac{H_{start_i}}{n}$$

$$0$$

$$1$$

$$8$$

$$8$$

$$8$$

$$8$$

$$8$$

$$= \frac{\theta_{i}}{\deg} = \frac{90}{90}$$

$$= \frac{90}{90}$$

$$= \frac{90}{90}$$

 $\operatorname{newH}_{\operatorname{start}_i} := XX \cdot \operatorname{ft}$ $\operatorname{new\theta}_i := XX \cdot \operatorname{deg}$ Enable the following to use default values (right click - Enable Eval.) $\operatorname{newH}_{\operatorname{start}_i} := \operatorname{H}_{\operatorname{start, default}}$

Change all values

 $\begin{array}{ll} \textit{Change individual wingwall values} \\ \textit{newH}_{\textit{start.ww}_{i}} := & \textit{new}\theta_{\textit{ww}_{i}} := \\ & & & & & & & \\ \textbf{XX} \cdot \textit{ft} & & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & & & \\ \textbf{XX} \cdot \textit{deg} & &$

0-left end

1-left begin 2-right end 3-right begin

Default *Wingwall Length:

$$i = \begin{array}{|c|c|} \hline 0 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline \end{array}$$

$$L_{ww.default} = \begin{pmatrix} 18\\18\\18\\18 \end{pmatrix} \text{ft} \qquad \begin{array}{l} *assumes\ roadway\ CL\ is \\ parallel\ to\ headwalls \end{array}$$

$$i = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
0-left end

$$\beta_{\text{sideslope}} = \begin{pmatrix} 26.57 \\ 26.57 \\ 26.57 \\ 26.57 \end{pmatrix} \cdot \deg$$

$$\begin{aligned}
& 1-left begin \\
& 2-right end \\
& 3 \\
& H_{start} = \begin{pmatrix} 8 \\ 8 \\ 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\$$

$$H_{\text{end.default}} = \begin{pmatrix} 8 \\ 8 \\ 8 \\ 8 \end{pmatrix}$$
 for

 $H_{end.default} = \begin{bmatrix} 8 \\ 8 \\ 8 \end{bmatrix}$ ft *assumes roadway CL is parallel to headwalls

Program current values

Change individual wingwall values

0-left end

1-left begin 2-right end 3-right begin

$$\frac{L_{ww_{i}}}{ft} = \frac{17}{17}$$

$$\frac{17}{17}$$

$$\frac{17}{17}$$

$$\begin{split} \text{newL}_{ww_i} &:= \textbf{XX} \cdot \text{ft} \\ \text{newH}_{end_i} &:= \textbf{XX} \cdot \text{ft} \\ \\ Enable the following to use *defaultivalues (right click - Enable Eval.): \\ \text{newL}_{ww_i} &:= L_{ww.default_i} \\ \text{newH}_{end_i} &:= H_{end.default_i} \end{split}$$

*Default value assumes roadway CL is parallel to headwalls

Enable the following to use *default $newH_{end_i} := H_{end.default_i}$

 $newL_{w.ww_i} := newH_{end.ww_i} :=$ $\beta_{user_i} :=$ XX-ft **XX**·ft XX.ft

XX-ft XX-ft XX-ft

XX.deg XX-deg XX-deg XX.deg

Soil Properties

$$\gamma_{\text{soil}} = 120 \cdot \frac{\text{lbf}}{\text{ft}^3}$$

$$\gamma_{\text{soil}} = 120 \cdot \frac{\text{lbf}}{\text{ft}^3}$$
 $\text{new} \gamma_{\text{soil}} \coloneqq \mathbf{XX} \cdot \frac{\text{lbf}}{\text{ft}^3}$
 $\text{soil friction angle}$

$$\phi = 30 \cdot \text{deg}$$

XX-ft

XX-ft

$$new\varphi := {\bm{X}}{\bm{X}}{\cdot}deg$$

$$k_s = 100000 \cdot \frac{lbf}{r^3}$$

$$newk_s := \mathbf{XX} \cdot \frac{lbf}{ft^3}$$

 $k_s = 100000 \cdot \frac{lbf}{ft^3} \quad newk_s := \textbf{XX} \cdot \frac{lbf}{ft^3} \quad \begin{array}{l} \textit{nominal bearing capacity,} \\ \textit{this is allowable bearing} \\ \textit{pressure(typically from)} \end{array}$ Geotech Engr) multiplied by factor of safety

$$q_{nom} = 2000 \cdot \frac{lbf}{ft^2}$$
 $newq_{nom} := XX \cdot \frac{lbf}{ft^2}$

Material Properties

Environmental Class 2 - moderately aggressive
$$2 - moderately$$
 aggressive $3 - extremely$ aggressive

modular ratio

 $n_{\text{mod}} = 9$

 $newn_{mod} := XX$

Page 181 of 219 density of concrete $\gamma_{\text{conc}} = 150 \cdot \frac{\text{lbf}}{\text{ft}^3}$ new $\gamma_{\text{conc}} := \mathbf{XX} \cdot \frac{\text{lbf}}{\text{ft}^3}$

reinforcing strength

$$F_v = 60 \cdot ksi$$

$$newF_y := \mathbf{XX} \cdot ksi$$

density of water

$$\gamma_{\rm w} = 62.4 \cdot \frac{\rm lbf}{\rm ft^3}$$

$$\gamma_{w} = 62.4 \cdot \frac{lbf}{ft^{3}}$$
 $new \gamma_{w} := XX \cdot \frac{lbf}{ft^{3}}$

concrete strength preset for FDOT work

$$f_{c.fdot} := if(Env \le 1, 3.4 \cdot ksi, 5.5 \cdot ksi)$$
 $f_{c.fdot} = 5.5 \cdot ksi$

$$f_{c,fdot} = 5.5 \cdot ksi$$

$$f_c = 5.5 \cdot ksi$$

$$newf_c := f_{c,fdot}$$

Concrete Modulus of Elasticity

$$E_{fdot} := if(AggFactor = 1, 0.9 \cdot 1820, 1820) \int \frac{f_{c,fdot}}{ksi} \cdot ksi$$
 enter "0" for Standard Aggregate or "1" for Florida Aggregate

$$\int \frac{f_{c.fdot}}{ksi} \cdot ksi$$

enter "0" for Standard Aggregate

AggFactor := 1

(based on strength as given in the Structures Design Guidelines)

$$E_{\text{fdot}} = 3841.45 \cdot \text{ksi}$$

$$newE := E_{fdot}$$

Construction Vehicle Load (optional)

Applies wheel load assuming no soil cover.

spacing between axles 1 and 2 & axles 2 and 3:

ConAxleSpacing1 = 16 ft

newConAxleSpacing1 := XX·ft

ConAxleSpacing2 = 16 ft

newConAxleSpacing2 := **XX**·ft

construction wheel loads 1, 2, and 3:

ConWheel1 = $0 \cdot \text{kip}$

 $newConWheel1 := XX \cdot kip$

ConWheel2 = $0 \cdot \text{kip}$

 $newConWheel2 := XX \cdot kip$

ConWheel3 = $0 \cdot \text{kip}$

 $newConWheel3 := XX \cdot kip$

Headwall Loads

Additional dead load if a barrier is located on top of the headwall

Set whether a line of truck wheels is considered as a loading. (1 = considered, 0 = not considered)

BarrierDL_{hw} = $0 \cdot \frac{\text{kip}}{\text{ft}}$

newBarrierDL_{hw} := $XX \cdot \frac{\text{kip}}{\Omega}$

Consider $LL_{hw} = 1$

 $newConsiderLL_{hw} := XX$

enter "0" for not considered or "1" for considered

end of data entry

Write Box Design Data to NewDataFile

CurrentDataFile = "\Data Files\6X4 w 13.5 soil.dat"

assign the data read in to the data to be read out, then change only the new values using the fSwitchData function: DataOut := DataIn

Box Culvert Program: Box & Headwall Load Cases

© 2002 Florida Department of Transportation

Project = "6' x 4' under 13.5' fill"

DesignedBy = "KMF"

CheckedBy = "DLF"

18/17/12

Generate Loads-Instructions:

- 1. 'Calculate Worksheet (CTRL+F9)' to generate loads for the following worksheets (Repeat process if changes are made to Worksheet 1).
- 2. Close this worksheet without saving and proceed to the following worksheet.

Note: AASHTO section references are shown at right margin, where appropriate, in bold-italic font

Design Parameters

Geometry and box dimensions from CurrentDataFile

 $W_c = 6 \text{ ft}$

opening width of cell

 $H_c = 4 \text{ ft}$

opening height of cell

 $T_t = 8 \cdot in$

top slab thickness, (8 inch min.)

 $T_b = 8 \cdot in$

bottom slab thickness, (8 inch min.)

 $T_i = 8 \cdot in$

interior wall thickness, (8 inch min.)

 $T_w = 8 \cdot in$

exterior wall thickness, (8 inch min.)

length of culvert along centerline

NoOfCells = 1

number of cells

Depth

Extension = 0

Box Section

extension type

0 new box no extension,

 T_{W}

Head = $14.17 \, \text{ft}$

water head at top of box (typically =

Depth = 14.17 ft distance from top of opening to surface

1 left extension, 2 right extension

(0,0)

HydraulicOpening := $W_c \cdot H_c \cdot NoOfCells$

HydraulicOpening = 24 ft²

 $b_w = 1 \text{ ft}$

This program analyses a one foot wide cross section

Soil properties

$$\gamma = 120 \cdot \frac{\text{lbf}}{3}$$

density of soil

$$\phi = 30 \cdot \deg \begin{cases}
soil \\
friction \\
angle
\end{cases}$$

$$k_s = 100000 \cdot \frac{lbf}{ft^3} \frac{modulus\ of}{subgrade}$$

$$q_{nom} = 2000 \, \text{ft} \cdot \frac{\text{lbf}}{\text{ft}^3}$$

Material properties

$$Env = 2$$

Environmental Class 1-slightly aggresive 2-moderate

$$n_{mod} = 9$$
 modular

 $f_c = 5.5 \cdot ksi$

concrete strength preset for FDOT work

E = 3841·ksi

concrete modulus of elasticity

$$\gamma_{\rm conc} = 150 \cdot \frac{\rm lbf}{{\rm ft}^3}$$

density of concrete

 $F_v = 60 \cdot ksi$

reinforcing strength

Construction vehicle loads (optional)

ConWheel1 = $0 \cdot \text{kip}$

ConWheel2 = $0 \cdot \text{kip}$

ConWheel3 = $0 \cdot \text{kip}$

construction wheel loads

ConAxleSpacing1 = 16 ft

axle spacing between Wheels 1 and 2

ConAxleSpacing2 = 16 ft

axle spacing between

Wheels 2 and 3

Headwall Loads

ConsiderLL_{hw} = 1

BarrierDL_{hw} = $0 \cdot \frac{\text{kip}}{\text{ft}}$

Box Culvert Design:

Section 1 - Box Loads, 75 pages

		0	1	2	3	4	5	6	7	8	9
Strength, T =	0	5.34	1.73	5.34	1.73	11.09	6.28	2.39	6.9	1.85	5.74
Strength _{box} =	1	9.63	-2.53	9.63	-2.53	0	4.04	0	-4.16	0	0
	2	0.01	0	0.01	0	0	9.63	-2.53	10.21	-1.95	

		0	1	2	3	4	5	6	7	8	9
Service T =	0	3.66	0	3.66	0	8.46	4.46	0	4.84	0	4.11
Service _{box} ' =	1	6.72	0.33	6.72	0.33	0	2.63	0	-2.75	0	0
	2	0	0	0	0	0	6.72	0.33	7.19	0.8	

Write box load data to DataOut variable

 $DataOut_{85} := Strength_{box}$

 $DataOut_{86} := Service_{box}$

Headwall Design

© 1999 Florida Department of Transportation

Design Headwall

Note: No lateral load analysis is performed on the headwall. If significant horizontal loads are anticipated, supplemental calculations are required.

Note: AASHTO section references are shown at right margin in bold-italic font.

SkewDiagram

Tributary Area for headwall design is defined in this file

nc := NoOfCells

iwbeg := if(Extension $\neq 2,0,1$) iwend := if(Extension $\neq 1,1,0$)

iw := iwbeg.. iwend

index for walls

Design parameters

$$\begin{array}{|c|c|} \hline 0 \\ \hline 1 \\ \hline \end{array} \qquad B_{hw} = \begin{pmatrix} 12 \\ 12 \\ \end{pmatrix} \cdot in$$

$$H_{\text{hw}} = \begin{pmatrix} 24 \\ 24 \end{pmatrix} \cdot \text{in}$$

$$Skew = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot deg \qquad \begin{array}{c} left \\ right \end{array}$$

 $BarrierDL_{hw} = 0 \cdot \frac{kip}{ft}$ Additional dead load if a barrier is located on top of the headwall

ConsiderLL_{hw} = 1

This variable sets whether a line of truck wheels is considered as a loading. A 1 value means it is considered and a 0 means it is not

$$ic := 0..(nc - 1)$$

index for cells

NoOfCells = 1

number of cells

 $f_c = 5.5 \cdot ksi$

opening

 $H_c = 4 \text{ ft}$

opening

 $W_c = 6 \text{ ft}$

width of cell

height of cell

interior wall $T_i = 8 \cdot in$

top slab thickness

 $T_w = 8 \cdot in$

exterior wall

thickness

 $T_t = 8 \cdot in$

thickness

Env = 2

 $n_{\text{mod}} = 9$

Environmental Class 1 is slightly

 $E = 3841 \cdot ksi$

concrete modulus of elasticity

 $\gamma = 120 \cdot \frac{\text{lbf}}{\text{ft}^3}$

soil density

aggressive 2 is moderate 3 is extreme

SoilHeight = 13.5 ft soil height above top slab

 $\gamma_{\rm w} = 62.4 \cdot \frac{\rm lbf}{\rm e^3}$

weight of water

ratio of steel and concrete modulus

of elasticity

 $\gamma_{\rm conc} = 150 \cdot \frac{\rm lbf}{\rm ft}^3$

concrete unit weight

 $F_v = 60 \cdot ksi$

Calculate load combinations

Strength

Strength_{hw}:= 1.25·Force_{sw} + 1.35·Force_{ew} + 1.75·Force_{ll}·ConsiderLL_{hw} + 1.75·Force_{lane}·ConsiderLL_{hw}

Service

 $\underline{\underline{Service_{hw}}} := 1.0 \cdot Force_{sw} + 1.0 \cdot Force_{ew} + 1.0 \cdot Force_{ll} \cdot Consider LL_{hw} + 1.0 \cdot Force_{lane} \cdot Consider LL_{hw}$

Due to the difference in the center-to-center span (model) versus clear span (actual) a reduction in the moment forces is allowed. For end moments, a reduction of 1/3*Vend*t is used and for midspan moments 1/6*Vend*t is used.

$$\underline{Strength}_{hw_{iw,2}} := Strength_{hw_{iw,2}} - \frac{1}{3} \cdot Strength_{hw_{iw,1}} \cdot \frac{T_w}{ft}$$

$$\underline{\underline{Service_{hw_{iw,2}}}} := \underline{Service_{hw_{iw,2}}} - \frac{1}{3} \cdot \underline{Service_{hw_{iw,1}}} \cdot \frac{\underline{T_w}}{ft}$$

$$Strength_{hw_{iw,3}} := Strength_{hw_{iw,3}} - \frac{1}{6} \cdot \left(\frac{4 \cdot Strength_{hw_{iw,3}}}{L_{hw_{iw,0}}}\right) \cdot \frac{T_w}{ft}$$

$$Service_{hw_{iw,3}} := Service_{hw_{iw,3}} - \frac{1}{6} \cdot \left(\frac{4 \cdot Service_{hw_{iw,3}}}{L_{hw_{iw,0}}} \right) \cdot \frac{T_w}{ft}$$

Strength_{hw} =
$$\begin{pmatrix} 29.05 & 16.79 & -3.73 & 43.31 & 29.27 \\ 29.05 & 16.79 & -3.73 & 43.31 & 29.27 \end{pmatrix}$$

Service_{hw} =
$$\begin{pmatrix} 16.97 & 9.96 & -2.21 & 25.32 & 17.09 \\ 16.97 & 9.96 & -2.21 & 25.32 & 17.09 \end{pmatrix}$$

Write box and headwall load CurrentDataFile

CurrentDataFile = "\Data Files\6X4 w 13.5 soil.da DataOut := DataIn

$$\underbrace{\text{DataOut}}_{31} := \frac{L_0}{\text{ft}}$$

$$DataOut_{85} := Strength_{box}$$

$$DataOut_{86} := Service_{box}$$

$$DataOut_{87} := Strength_{hw}$$

$$DataOut_{88} := Service_{hw}$$

$$DataOut_{101} := BoxForce_{trk}$$

$$DataOut_{102} := BoxForce_{ll}$$

$$DataOut_{103} := BoxForce_{dc}$$

$$DataOut_{104} := BoxForce_{lane}$$

$$DataOut_{105} := BoxForce_{es}$$

$$DataOut_{106} := BoxForce_{ev}$$

$$DataOut_{107} := BoxForce_{eh}$$

$$DataOut_{109} := BoxForce_{ls}$$

$$DataOut_{112} := \frac{Haunch_{top}}{in}$$

DataOut₁₁₃ :=
$$\frac{\text{Haunch}_{\text{bot}}}{\text{in}}$$

WRITEPRN(CurrentDataFile) := DataOut

WRITEPRN(NewDataFile) := DataOut

Box Culvert Program:Box Reinforcement Design

© 2002 Florida Department of Transportation

Project = "6' x 4' under 13.5' fill"

DesignedBy = "KMF"

CheckedBy = "DLF" 8/17/2012

Note: AASHTO section references are shown at right margin, where appropriate, in bold-italic font

 $b_{w} = 1$ ft This program analyzes a one foot wide cross section

1. Design Parameters

Geometry and Box Dimensions

$$W_c = 6 \text{ ft}$$
 opening width of cell

$$H_c = 4 \text{ ft}$$
 opening height of cell

$$T_t = 8 \cdot in$$
 top slab thickness, (8 inch min.)

$$T_b = 8 \cdot in$$
 bottom slab thickness, (8 inch min.)

$$T_w = 8 \cdot in$$
 exterior wall thickness, (8 inch min.)

$$T_i = 8 \cdot in$$
 interior wall thickness, (8 inch min.)

$$L_c = 100 \text{ ft}$$
 length of culvert along centerline

Extension =
$$0$$
 extension type

0 new box, no extension.

1 left extension

2 right extension

box (typically =

0.0)

$$Skew_{box} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot deg$$

HydraulicOpening := W_c·H_c·NoOfCells

HydraulicOpening = 24 ft²

Soil Properties

$$\gamma = 120 \cdot \frac{\text{lbf}}{e^3}$$
 density of soil

$$k_s = 100000 \cdot \frac{lbf}{ft^3}$$

$$\phi = 30 \cdot \text{deg}$$
 soil friction angle

Material Properties

$$n_{mod} = 9$$
 modular ratio

 $f_c = 5.5 \cdot ksi$

$$\gamma_{\rm conc} = 150 \cdot \frac{\rm lbf}{{\rm e}^3}$$
 density of concrete

$$F_y = 60 \cdot ksi$$

reinforcing strength

Construction Vehicle Loads (if required)

ConWheel1 =
$$0 \cdot kip$$

ConWheel2 =
$$0 \cdot \text{kip}$$

ConWheel3 =
$$0 \cdot \text{kip}$$

2. Design and Check Main Reinforcing

CurrentDataFile = "\Data Files\6X4 w 13.5 soil.dat"

it := 0...20 index for transverse sections

$$BarSize_{box_{it}} := 0$$
 $S_{box_{it}} := 12 \cdot in$

Cross Section Notes:

- 1. Bars shown with the same color are combined as Bar Groups.
- 2. Colored numbers indicate moment analysis.
- 3. Colored numbers in parenthesis indicate shear analysis locations.
- 4. Black numbers refer to bar designations.

Enter box reinforcing size and spacing

Generally, reinforcement should be at least a #3 bar and spacing should not exceed 12 inches.

Note: Shear generally controls slab and wall thicknesses and cracking generally controls reinforcement areas

Bar Designation

(section number) Bar Sizes & Spacings used in analysis

Change Bar Group values (color) or change individual Bars (white)

BarSize_{slabs} =
$$\begin{pmatrix} 5 \\ 5 \\ 5 \\ 5 \end{pmatrix}$$
 $S_{slabs} = \begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \end{pmatrix} \cdot in$

$$S_{slabs} = \begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \end{pmatrix} \cdot in$$

$$newS_{slabs} := XX \cdot in$$

$$BarSizeD1_{01} := XX \quad SD1_{01} := XX \cdot in$$

BarSizeD1₀₂ :=
$$XX$$
 SD1₀₂ := $XX \cdot in$

$$BarSizeD1_{03} := XX SD1_{03} := XX \cdot in$$

$$\mathsf{BarSizeD1}_{04} \coloneqq \mathbf{XX} \quad \mathsf{SD1}_{04} \coloneqq \mathbf{XX} \cdot \mathsf{in}$$

D104(15)

BarSize_{corners} =
$$\begin{pmatrix} 5 \\ 5 \end{pmatrix}$$
 $S_{corners} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}$ in

$$S_{corners} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \cdot in$$

BarSizeD1₀₅ :=
$$XX$$
 SD1₀₅ := $XX \cdot in$
BarSizeD1₀₆ := XX SD1₀₆ := $XX \cdot in$

$$BarSize_{corners} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

D107(11) D108(6,8,10)

BarSize_{walls} =
$$\begin{pmatrix} 5 \\ 5 \end{pmatrix}$$
 $S_{\text{walls}} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}$ in

$$S_{\text{walls}} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \cdot \text{in}$$

Page 189 of 219 $BarSizeD1_{07} := XX SD1_{07} := XX in$ $\mathsf{BarSizeD1}_{08} \coloneqq \mathbf{XX} - \mathsf{SD1}_{08} \coloneqq \mathbf{XX} \cdot \mathsf{in}$

Section 2 - Box Main Reinforcement, 10 pages

Summary(CheckCrackingbox) = "OK"

$CheckM_{box}^{T} =$		0	1	2	3	4	5	6	7	8	9	
Circoniiio	0	"ok"	"ok"	"ok"	"ok"	· "ok"	"ok"	"ok"	"ok"	"ok"		

Summary($CheckM_{box}$) = "OK"

$CheckAs_{min.box}^{T} =$		0	1	2	3	4	5	6	7	8	9
Check Ismin.box	0	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	

Summary(CheckAs_{min.box}) = "OK"

$\frac{T}{CheckShear_{box}} =$		0	. 1	2	3	4	5	6	7	8	9	
Checkenean Box	0	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	•••	

Summary(CheckShear_{box}) = "OK"

 $Summary(CheckAll_{box}) = "OK"$

3. Design and Check Box **Longitudinal Reinforcing**

CurrentDataFile = "\Data Files\6X4 w 13.5 soil.dat"

To meet LRFD temperature and shrinkage requirements, reinforcement spacing should not exceed 12 inches.

il := 0..4 index for longitudinal sections

Enter Box Longitudinal Reinforcing

Bar Sizes & Spacings used in analysis

BarSize_{long} =
$$\begin{pmatrix} 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{pmatrix}$$

$$S_{long} = \begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \\ 6 \end{pmatrix} \cdot in$$

Change Bar Group (color) values or change individual Bars (white)

$$newBarSize_{long} := XX$$
 $newS_{long} := XX \cdot in$

$$\begin{aligned} & \text{BarSizeD1}_{10} \coloneqq \textbf{XX} & \text{SD1}_{10} \coloneqq \textbf{XX} \cdot \text{in} \\ & \text{BarSizeD1}_{11} \coloneqq \textbf{XX} & \text{SD1}_{11} \coloneqq \textbf{XX} \cdot \text{in} \\ & \text{BarSizeD1}_{12} \coloneqq \textbf{XX} & \text{SD1}_{12} \coloneqq \textbf{XX} \cdot \text{in} \\ & \text{BarSizeD1}_{13} \coloneqq \textbf{XX} & \text{SD1}_{13} \coloneqq \textbf{XX} \cdot \text{in} \end{aligned}$$

 $SD1_{09} := XX \cdot in$

$$CheckAs_{temp,box}^{T} = ("ok" "ok" "ok" "ok" "ok")$$

 $BarSizeD1_{09} := XX$

Write Box Design Data to

CurrentDataFile = "\Data Files\6X4 w 13.5 soil.dat" **file**

Assign the data values read in to the ones to be read out, then change only the ones modified in this file

DataOut := DataIn

$$DataOut_{32} := BarSize_{slabs}$$

$$DataOut_{33} := \frac{S_{slabs}}{in}$$

$$DataOut_{34} := BarSize_{walls}$$

$$DataOut_{35} := \frac{S_{walls}}{in}$$

$$DataOut_{36} := BarSize_{corners}$$

$$DataOut_{37} := \frac{S_{corners}}{in}$$

$$DataOut_{38} := BarSize_{long}$$

DataOut₃₉ :=
$$\frac{S_{long}}{in}$$

$$DataOut_{55} := str2vec(Summary(CheckAll_{box})) \qquad DataOut_{90} := ReinfBox \qquad DataOut_{94} := \frac{As}{ft^2} \qquad DataOut_{95} := \frac{S_{bo}}{ft}$$

$$\mathsf{DataOut}_{96} \coloneqq \mathsf{BarSize}_{\mathsf{loc}}$$

$$DataOut_{110} := \frac{d}{ft} \qquad DataOut_{111} := \frac{t_{section}}{ft}$$

WRITEPRN(CurrentDataFile) := DataOut

WRITEPRN(NewDataFile) := DataOut

2301 Maitland Center Pkwy	Client TVA Project Ash Pond	Job No. 956	18-92016	Computed By KMF Date 6/28/2012
Suite 300	Detail 6'x4' Box Culve		4	Page No. 1
Maitland, FL 32751	Inle	t Box Culvert	0	
		Buoyancy Check For Rectangular		
uthor: Justin B	loggs Date:	20-Mar-07 Checked By:	File N	ame: buoy-rec.xls
		wledge of the analysis procedure used in th gram is for the use of CDM Structural Engin		gram is subject to structural
Parameters				
Concrete Density (γ _c)	0.150 kip/ft ³	Backfill Soil Densi (Typ. Range 100 t	to 125 pcf)	3
Vater Density (γ _w)	0.0624 kip/ft ³	Soil Friction Angle (Typ. Range 15 to	TO THE PERSON NAMED IN COLUMN 1)
tructure Dimensions				
nside Length (I)	1 ft	Top Slab Thickness (t _{ts})	Height of Walls abo	ove 4 ft
side Width (w)	6 ft	Base Slab Thickness (t bs) 8 in	Base Slab (h ;) Height to Grade ab	ove 6.67 ft
Vall Thickness (t _w)	8 in \	Base Slab Toe Width (I toe) 0 in	Base Slab (h 。) Height to GWL abo	ove 6.67 ft
nterior Wall Thickness	0 in	Interior Wall Length 0 ft	Base Slab (h ") Interior Wall Height	t Oft
		Height of Water in Box Culvert 48 in	Height of Soil Abov Top Slab (h _s)	re 24 in
		70 11	(24 10
plift Forces				
olume of Displaced Water 6 ft + 2(0.67)]* 4.67		evel		34.2 ft ³
olume of Displaced Water	r - Volume of Base Sla	b		4.9 ft ³
olume of Displaced Water	r - Total			39.1 ft ³
plift Force (U)			$V \cdot \gamma_{\kappa} =$	2.44 <i>kip/f</i> t
esisting Loads				
eight of Top Slab (wts)			$l \cdot w \frac{t_{ls}}{12} \gamma$	$_{c}$ = 0.60 kip/ft
eight of Soil Above Top S	Slab		12	0.77 kip/ft
eight of Water in Box Cul	lvert (reduced by 40%)			0.60 kip/ft
eight of Base Slab (wbs)				0.733 kip/ft
eight of Exterior Walls (w				
,	w)			0.93 kip/ft
				0.93 kip/ft
			=	0.93 kip/ft 0.00 kip/ft
eight of Interior Walls (w	wi)	$\left[\left(1 + 2 \frac{l_u + l_{loc}}{12} \right) w + 2 \frac{l_u + l_{loc}}{12} \right) - \left(1 + 2 \frac{l_u}{12} \right) w + 2 \frac{l_u}{12} $	E-1	***************************************
reight of Interior Walls (w	wi) of Base Slab (ws1)	$ \left[\left(1 + 2 \frac{t_u + l_{nec}}{12} \right) w + 2 \frac{t_u + l_{nec}}{12} \right) - \left(1 + 2 \frac{t_u}{12} \right) w + 2 \frac{t_u}{12} $ $ \left(\frac{1}{2} h_c^2 TAN(\phi) \gamma_{sut} - \frac{1}{2} h_u^2 TAN(\phi) \gamma_u \right) $	$\left[\left(h_{e}-h_{w}\right)\gamma_{sst}+\left[h_{u}(\gamma_{sst}-\gamma_{w})\right]\right]=$	0.00 kip/ft
eight of Interior Walls (wo	wi) of Base Slab (ws1)	[(12)(13)(13)	$\left[\left(h_{e}-h_{w}\right)\gamma_{sst}+\left[h_{u}(\gamma_{sst}-\gamma_{w})\right]\right]=$	0.00 kip/ft 0.00 kip/ft
eight of Interior Walls (we leight of Soil Above Toe consider the soil in "Pullout Weight of Structure	wi) of Base Slab (ws1) /edges" (ws2)	[(12)(13)(13)	$\left[\left(h_{e}-h_{w}\right)\gamma_{sst}+\left[h_{u}(\gamma_{sst}-\gamma_{w})\right]\right]=$	0.00 kip/ft 0.00 kip/ft 0.00 kip/ft
reight of Interior Walls (we reight of Soil Above Toe of reight of Soil in "Pullout We reight of Structure reight of Structure + Soil A	of Base Slab (ws1) /edges" (ws2)	[(12)(13)(13)	$\left[\left(h_{e}-h_{w}\right)\gamma_{sst}+\left[h_{u}(\gamma_{sst}-\gamma_{w})\right]\right]=$	0.00 kip/ft 0.00 kip/ft 0.00 kip/ft 2.27 kip/ft
/eight of Interior Walls (www./eight of Soil Above Toe of Meight of Soil in "Pullout Walls of Structure + Soil Adventure + So	wi) of Base Slab (ws1) //edges" (ws2) Area 1 Area 1 + Soil Area 2	[(12)(13)(13)	$\left[\left(h_{e}-h_{w}\right)\gamma_{sst}+\left[h_{u}(\gamma_{sst}-\gamma_{w})\right]\right]=$	0.00 kip/ft 0.00 kip/ft 0.00 kip/ft 2.27 kip/ft 2.27 kip/ft
reight of Interior Walls (we reight of Soil Above Toe of reight of Soil in "Pullout Walls reight of Structure reight of Structure + Soil A	of Base Slab (ws1) Vedges" (ws2) Area 1 Area 1 + Soil Area 2 Above Top Slab	[(12)(13)(13)	$\left[\left(h_{e}-h_{w}\right)\gamma_{sst}+\left[h_{u}(\gamma_{sst}-\gamma_{w})\right]\right]=$	0.00 kip/ft 0.00 kip/ft 0.00 kip/ft 2.27 kip/ft 2.27 kip/ft 2.27 kip/ft

Box Culvert Analysis Program

Dimensions and Material Properties

© 2002 Florida Department of Transportation

This program uses design values from the CurrentDataFile in use. It is generally <u>not</u> necessary to save the modified Mathcad worksheet since all the design values are saved in the CurrentDataFile.

Reference:C:\FDOT Structures\Programs\LRFDBoxCulvertV3.2\ReadData.xmcd(R)

data file currently in use: (verify your intended file)

CurrentDataFile = "\Data Files\6X5 w 13.5 soil.dat"

Only change <u>new</u> values. Calculate Worksheet (CTRL+F9) twice to save/view new values..

If current data values are correct, leave (XX) in the newData field.

Project = "6' x 5' under 13.5' fill" newProject := "XX"

DesignedBy = "KMF" newDesignedBy := "XX"

CheckedBy = "DLF" newCheckedBy := "XX"

Comment = "two cell, no box skew, wingwalls parallel to traffic"

newComment := "XX"

Design Parameters

b_w = 1 ft This program analyzes a one foot wide cross section

newExtension :=

Geometry and Box Dimensions to enter and/or change data values, change XX dimension values to the desired values

opening width of cell	$W_c = 6 \text{ ft}$	$newW_c \coloneqq \; \boldsymbol{XX} \! \cdot \! ft$	opening height of cell	$H_c = 5 \text{ ft}$	$newH_c := \mathbf{XX} \cdot ft$
top slab thickness, (8 inch min.)	$T_t = 8 \cdot in$	$newT_t := \mathbf{XX} \cdot in$	bottom slab thickness, (8 inch min.)	$T_b = 8 \cdot in$	$newT_b := XX \cdot in$
exterior wall thickness, (8 inch min.)	$T_{w} = 8 \cdot in$	$newT_w := \mathbf{XX} \cdot in$	interior wall thickness, (8 inch min.)	$T_i = 8 \cdot in$	$newT_i := \mathbf{XX} \cdot in$
length of culvert	$L_c = 100 \text{ ft}$	$newL_c := \textbf{XX} \cdot ft$	number of cells	NoOfCells = 1	newNoOfCells := XX
along centerline distance from top of opening to surface	Depth = 14.17 ft	newDepth := $\mathbf{XX} \cdot \mathbf{ft}$	water head at top of box opening (typically = 0.0)	Head = 14.17 ft	$newHead := \mathbf{XX} \cdot ft$

extension type

0 - new box (no extension)

1- left extension

2 - right extension

Extension = 0

extension notes:

1.Two feet is added automatically to the length of culvert and corresponding rebar lengths for splicing to existing culvert per Index No. 289 2. When switching extension types, extension-specific variables require new user inputs (e.g. H_{start} , H_{end} , & L_{ww})

index for number of headwalls

iwbeg := if (Extension $\neq 2, 0, 1$)

iwend := if (Extension $\neq 1, 1, 0$)

iw := iwbeg.. iwend

iw =0

1

Change all Group values (color) and/or change individual values (white). (Use Math - Calculate Worksheet to update)

Left & right

Headwall height

(headwall exceeding 2 feet above the top slab is beyond the intent of this program)

$$H_{hw} = \begin{pmatrix} 24 \\ 24 \end{pmatrix} \cdot in$$

$$newH_{hw} := XX \cdot in$$

$$newH_{hw.left} := \ \boldsymbol{XX} \cdot in$$

$$newH_{hw.right} := XX \cdot in$$

$$\mathbf{B}_{hw} = \begin{pmatrix} 12 \\ 12 \end{pmatrix} \cdot \mathbf{in}$$

$$newB_{hw} := XX \cdot in$$

$$\mathsf{newB}_{hw.left} \coloneqq \; \boldsymbol{XX} {\cdot} \mathsf{in}$$

$$newB_{hw.right} := XX \cdot in$$

₽1--

CurrentDataFile = "\Data Files\6X5 w 13.5 soil.dat"

box end skew (enter zero if opposite end of extension)

$$Skew_{box} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot deg$$

$$Skew_{box} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot deg \qquad newSkew_{box} := \begin{pmatrix} \mathbf{XX} \cdot deg \\ \mathbf{XX} \cdot deg \end{pmatrix} \quad \begin{array}{l} left \\ right \end{array}$$

depth of soil above top slab

SoilHeight := if $\left(\text{newDepth} = \mathbf{XX} \cdot \text{ft}, \text{Depth}, \text{newDepth}\right) - \text{if}\left(\text{newT}_t = \mathbf{XX} \cdot \text{in}, T_t, \text{newT}_t\right)$

SoilHeight = 13.5 ft

Wingwall Geometry

ibeg := if(Extension $\neq 2,0,2$)

iend := if(Extension $\neq 1,3,1$)

i := ibeg.. iend

Notes:

Box skew angles measured from square, counterclockwise positive. Wingwall angles θ measured from box wall to wingwall. (allowable range for θ is 45 to 225 degrees). EmbankmentSlope is the slope of the soil below the top of the wingwall and used to calculate the wingwall length. SideSlope is the slope of the soil that goes downward perpendicular to the top of the headwall. If there are two headwalls and they are not parallel, default θ sideslope has to be overridden using θ user.

EmbankmentSlope :=
$$\frac{1}{2}$$
 rise run

SideSlope :=
$$\frac{1}{2}$$
 rise run

$$H_{\text{start.default}} := \max(H_{\text{hw}}) + if[(\text{newH}_{c} = XX \cdot \text{ft}), H_{c}, \text{newH}_{c}]$$

$$H_{start.default} = 7 \text{ ft}$$

Program current values

$$i = \frac{H_{start_i}}{ft}$$

$$\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 8 \\ 8 \\ 8 \\ 8 \end{bmatrix}$$

$$\frac{\theta_{i}}{\text{deg}} = \frac{90}{90}$$

$$\frac{90}{90}$$

$$\frac{90}{90}$$

 $newH_{start_i} := XX \cdot ft$ $new\theta_i := XX \cdot deg$ Enable the following to use default values (right click - Enable Eval.) $newH_{start_i} := H_{start,default}$

Change all values

 $\begin{array}{lll} newH_{start,ww_{_{\hat{I}}}} := & new\theta_{ww_{_{\hat{I}}}} := \\ \hline & \textbf{XX} \cdot \text{ft} \\ \textbf{XX} \cdot \text{ft} \\ \textbf{XX} \cdot \text{ft} \\ \textbf{XX} \cdot \text{ft} \\ \textbf{XX} \cdot \text{deg} \\ \textbf{XX} \cdot \text{ft} \\ \textbf{XX} \cdot \text{deg} \\ \hline & \textbf{XX} \cdot \text{deg} \\ \hline & \textbf{XX} \cdot \text{deg} \\ \hline \end{array}$

Change individual wingwall values

0-left end

1-left begin 2-right end 3-right begin

Default *Wingwall Length:

$$i = \begin{bmatrix} 0\\ 1\\ 2\\ 3 \end{bmatrix}$$

$$L_{ww.default} = \begin{pmatrix} 18\\18\\18\\18 \end{pmatrix} \text{ft} \qquad \begin{array}{c} *assumes\ roadway\ CL\ is \\ parallel\ to\ headwalls \end{array}$$

0-left end

Default *Wingwall End Height:

$$\beta_{\text{sideslope}} = \begin{pmatrix} 26.57 \\ 26.57 \\ 26.57 \\ 26.57 \end{pmatrix} \cdot \deg$$

1-left begin
2-right end
3
$$H_{start} = \begin{pmatrix} 8 \\ 8 \\ 8 \end{pmatrix}$$
 ft

$$H_{end.default} = \begin{pmatrix} 8 \\ 8 \\ 8 \\ 8 \end{pmatrix}$$
 ft *assumes roadway CL is parallel to headwalls

Program current values

Change individual wingwall values

$$\frac{H_{end_i}}{ft} = \frac{8}{8}$$

$$\begin{split} \text{newL}_{ww_i} &:= \textbf{XX} \cdot \text{ft} \\ \text{newH}_{end_i} &:= \textbf{XX} \cdot \text{ft} \\ \\ \textit{Enable the following to use *default values (right click - Enable Eval.):} \\ \text{newL}_{ww_i} &:= L_{ww.default_i} \\ \text{newH}_{end_i} &:= H_{end.default_i} \end{split}$$

*Default value assumes roadway

 $newL_{w.ww_i} := \quad newH_{end.ww_i} :=$ **XX**·deg XX-ft XX.ft XX-ft **XX**·deg XX.ft XX.ft XX-deg

XX.ft

1-left begin 2-right end 3-right begin

0-left end

CL is parallel to headwalls

Soil Properties

$$\gamma_{\text{soil}} = 120 \cdot \frac{\text{lbf}}{\text{ft}^3}$$

$$\gamma_{soil} = 120 \cdot \frac{lbf}{ft^3}$$
 $new \gamma_{soil} := XX \cdot \frac{lbf}{ft^3}$

soil friction angle
$$\phi = 30 \cdot \deg$$

$$\phi = 30 \cdot \text{deg}$$

XX-ft

XX ft

$$new\phi := XX \cdot deg$$

 $\beta_{user_i} :=$

XX-deg

$$k_s = 100000 \cdot \frac{lbf}{ft^3}$$

$$newk_s := \mathbf{XX} \cdot \frac{lbf}{ft^3}$$

nominal bearing capacity, $k_s = 100000 \cdot \frac{lbf}{ft^3}$ newk_s := $\mathbf{XX} \cdot \frac{lbf}{ft^3}$ nominal bearing capacity, this is allowable bearing pressure(typically from Geotech Engr) multiplied by factor of safety

$$q_{nom} = 2000 \cdot \frac{lbf}{ft^2}$$
 $newq_{nom} := XX \cdot \frac{lbf}{ft^2}$

Material Properties

$$v = 2$$
 newEnv := \mathbf{X}

$$newEnv := XX$$

modular ratio

 $n_{\text{mod}} = 9$

 $newn_{mod} := XX$

 $\textit{density of concrete} \quad \gamma_{conc} = 150 \cdot \frac{\underset{lbf}{lbf}}{\text{new}} \gamma_{conc} := \textbf{XX} \cdot \frac{lbf}{\text{ft}^3}$

reinforcing strength

$$F_{\rm v} = 60 \cdot {\rm ksi}$$

$$\mathsf{newF}_y \coloneqq \boldsymbol{\mathsf{XX}}{\cdot}\mathsf{ksi}$$

density of water

$$\gamma_{\rm w} = 62.4 \cdot \frac{\rm lbf}{\rm p^3}$$

$$\gamma_{\rm w} = 62.4 \cdot \frac{\rm lbf}{{\rm ft}^3}$$
 new $\gamma_{\rm w} := XX \cdot \frac{\rm lbf}{{\rm ft}^3}$

concrete strength preset for FDOT work

$$f_{c.fdot} := if(Env \le 1, 3.4 \cdot ksi, 5.5 \cdot ksi)$$
 $f_{c.fdot} = 5.5 \cdot ksi$

$$f_{c \text{ fdot}} = 5.5 \cdot \text{ksi}$$

$$f_c = 5.5 \cdot ksi$$

$$newf_c := f_{c.fdot}$$

Concrete Modulus of Elasticity (based on strength as given in the Structures Design Guidelines)

$$E_{fdot} := if(AggFactor = 1, 0.9 \cdot 1820, 1820) \sqrt{\frac{f_{c.fdot}}{ksi}} \cdot ksi \qquad \textit{enter "0" for Standard Aggregate} \\ or "1" \textit{for Florida Aggregate}$$

AggFactor := 1

 $E_{fdot} = 3841.45 \cdot ksi$

$$newE := E_{fdot}$$

Construction Vehicle Load (optional)

Applies wheel load assuming no soil cover.

spacing between axles 1 and 2 & axles 2 and 3:

newConAxleSpacing1 := **XX**·ft ConAxleSpacing1 = 16 ft

ConAxleSpacing2 = 16 ft

newConAxleSpacing2 := **XX**·ft

construction wheel loads 1, 2, and 3:

ConWheel1 = $0 \cdot \text{kip}$

newConWheel1 := **XX**·kip

ConWheel2 = $0 \cdot \text{kip}$

 $newConWheel2 := XX \cdot kip$

ConWheel3 = $0 \cdot \text{kip}$

 $newConWheel3 := XX \cdot kip$

Headwall Loads

Additional dead load if a barrier is located on top of the headwall

Set whether a line of truck wheels is considered as a loading. (1 = considered, 0 = not considered)

BarrierDL_{hw} = $0 \cdot \frac{\text{kip}}{\theta}$ newBarrierDL_{hw} := $\mathbf{XX} \cdot \frac{\text{kip}}{\theta}$

ConsiderLL_{hw} = 1

 $newConsiderLL_{hw} := XX$

enter "0" for not considered or "1" for considered

end of data entry

Write Box Design Data to NewDataFile

CurrentDataFile = "\Data Files\6X5 w 13.5 soil.dat"

assign the data read in to the data to be read out, then change only the new values using the fSwitchData function: DataOut := DataIn

Box Culvert Program: Box & Headwall Load Cases

© 2002 Florida Department of Transportation

Project = "6' x 5' under 13.5' fill"

DesignedBy = "KMF"

CheckedBy = "DLF"

Af 8/11/2012

Generate Loads-Instructions:

- 1. 'Calculate Worksheet (CTRL+F9)' to generate loads for the following worksheets (Repeat process if changes are made to Worksheet 1).
- Close this worksheet without saving and proceed to the following worksheet.

Note: AASHTO section references are shown at right margin, where appropriate, in bold-italic font

Design Parameters

Geometry and box dimensions from CurrentDataFile

$$W_c = 6 \text{ ft}$$

opening width of cell

$$H_c = 5 \text{ ft}$$

opening height of cell

$$T_t = 8 \cdot in$$

top slab thickness, (8 inch min.)

$$T_b = 8 \cdot in$$

bottom slab thickness, (8 inch min.)

interior wall thickness, (8 inch min.)

$$T_i = 8 \cdot in$$

$$T_w = 8 \cdot in$$

exterior wall thickness, (8 inch min.)

$$L_c = 100 \text{ ft}$$

length of culvert

NoOfCells = 1

number of cells

Depth

Extension = 0

Box Section

extension type

along centerline

Depth = 14.17 ft distance from top of

0 new box no extension,

Tw

Head = $14.17 \, \text{ft}$

water head at top of box (typically =

1 left extension, 2 right extension

0.0)

opening to surface

HydraulicOpening := $W_c \cdot H_c \cdot NoOfCells$

HydraulicOpening = 30 ft²

 $b_w = 1 \text{ ft}$

This program analyses a one foot wide cross section

Soil properties

$$\gamma = 120 \cdot \frac{\text{lbf}}{3}$$

density of soil

$$k_s = 100000 \cdot \frac{lbf}{ft^3} \frac{modulus\ of}{subgrade}$$

$$q_{nom} = 2000 \, \text{ft} \cdot \frac{\text{lbf}}{\text{ft}^3}$$

Material properties

$$Env = 2$$

$$n_{mod} = 9$$
 modular

$$\gamma_{\rm conc} = 150 \cdot \frac{\rm lbf}{\rm ft^3}$$

density of concrete

 $F_v = 60 \cdot ksi$

reinforcing strength

Construction vehicle loads (optional)

ConWheel1 = $0 \cdot \text{kip}$

ConWheel2 = $0 \cdot \text{kip}$

ConWheel3 = $0 \cdot \text{kip}$

construction wheel loads

ConAxleSpacing1 = 16 ft

axle spacing between Wheels 1 and 2

ConAxleSpacing2 = 16 ft

axle spacing between

Wheels 2 and 3

Headwall Loads

 $ConsiderLL_{hw} = 1$

BarrierDL_{hw} =
$$0 \cdot \frac{\text{kip}}{\text{ft}}$$

Box Culvert Design:

Section 1 - Box Loads, 75 pages

		0	1	2	3	4	5	6	7	8	9
Stuarenth T	0	5.64	2.05	5.64	2.05	11.98	6.34	2.71	7.09	2.08	5.95
$Strength_{box}^{1} =$	1	9.63	-2.53	9.63	-2.53	0	5.07	0	-5.18	0	0
	2	0.01	0	0.01	0	0	9.63	-2.53	10.34	-1.82	

		0	1	2	3	4	5	6	7	8	9
Service T =	0	3.84	0	3.84	0	9.19	4.48	0	4.95	0	4.6
Service _{box} ' =	1	6.72	0.33	6.72	0.33	0	3.32	0	-3.42	0	0
	2	0	0	0	0	0	6.72	0.33	7.29	0.9	

Write box load data to DataOut variable

 $DataOut_{85} := Strength_{box}$

 $DataOut_{86} := Service_{box}$

Headwall Design

© 1999 Florida Department of Transportation

Design Headwall

Note: No lateral load analysis is performed on the headwall. If significant horizontal loads are anticipated, supplemental calculations are required.

Note: AASHTO section references are shown at right margin in bold-italic font.

SkewDiagram

Tributary Area for headwall design is defined in this file

nc := NoOfCells

iwbeg := if(Extension $\neq 2,0,1$) iwend := if(Extension $\neq 1,1,0$)

iw := iwbeg.. iwend

index for walls

Design parameters

$$B_{hw} = \begin{pmatrix} 12 \\ 12 \end{pmatrix} \cdot in$$

$$H_{hw} = \begin{pmatrix} 24 \\ 24 \end{pmatrix} \cdot in$$

$$Skew = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot deg \qquad \begin{array}{c} left \\ right \end{array}$$

BarrierDL_{hw} = $0 \cdot \frac{\text{kip}}{\text{ft}}$ Additional dead load if a barrier is located on top of the headwall

ConsiderLL_{hw} = 1

This variable sets whether a line of truck wheels is considered as a loading. A 1 value means it is considered and a 0 means it is not

$$ic := 0..(nc - 1)$$

index for cells

NoOfCells = 1

number of cells

 $f_c = 5.5 \cdot ksi$

$$W_c = 6 \text{ ft}$$

opening

 $H_c = 5 \text{ ft}$

opening

width of cell

height of cell

 $T_i = 8 \cdot in$

Env = 2

interior wall thickness

 $T_t = 8 \cdot in$

top slab thickness

 $T_w = 8 \cdot in$

exterior wall

thickness

Environmental Class 1 is slightly

concrete modulus

soil density

aggressive 2 is moderate

 $E = 3841 \cdot ksi$

of elasticity

 $\gamma = 120 \cdot \frac{\text{lbf}}{\text{ft}^3}$

3 is extreme

SoilHeight = 13.5 ft soil height above

top slab

 $\gamma_{\rm w} = 62.4 \cdot \frac{\rm lbf}{\rm e}^3$

weight of water

ratio of steel and $n_{\text{mod}} = 9$ concrete modulus of elasticity

 $\gamma_{\rm conc} = 150 \cdot \frac{\rm lbf}{\rm ft}^3$

concrete unit weight

 $F_v = 60 \cdot ksi$

Calculate load combinations

Strength

Strength_{hw}:= 1.25·Force_{sw} + 1.35·Force_{ew} + 1.75·Force_{ll}·ConsiderLL_{hw} + 1.75·Force_{lane}·ConsiderLL_{hw}

Service

 $\underline{\underline{Service_{hw}}} := 1.0 \cdot Force_{sw} + 1.0 \cdot Force_{ew} + 1.0 \cdot Force_{ll} \cdot Consider LL_{hw} + 1.0 \cdot Force_{lane} \cdot Consider LL_{hw}$

Due to the difference in the center-to-center span (model) versus clear span (actual) a reduction in the moment forces is allowed. For end moments, a reduction of 1/3*Vend*t is used and for midspan moments 1/6*Vend*t is used.

$$\underline{Strength_{hw_{iw,2}}} := Strength_{hw_{iw,2}} - \frac{1}{3} \cdot Strength_{hw_{iw,1}} \cdot \frac{T_w}{ft}$$

$$\underbrace{\mathsf{Service}_{\mathsf{hW}_{\mathsf{iw}},2}}_{\mathsf{fw},2} := \mathsf{Service}_{\mathsf{hW}_{\mathsf{iw}},2} - \frac{1}{3} \cdot \mathsf{Service}_{\mathsf{hW}_{\mathsf{iw}},1} \cdot \frac{\mathsf{T}_{\mathsf{W}}}{\mathsf{ft}}$$

$$Strength_{hw_{iw,3}} := Strength_{hw_{iw,3}} - \frac{1}{6} \cdot \left(\frac{4 \cdot Strength_{hw_{iw,3}}}{L_{hw_{iw,0}}}\right) \cdot \frac{T_w}{ft}$$

$$Service_{hw_{iw,3}} := Service_{hw_{iw,3}} - \frac{1}{6} \cdot \left(\frac{4 \cdot Service_{hw_{iw,3}}}{L_{hw_{iw,0}}} \right) \cdot \frac{T_w}{ft}$$

Strength_{hw} =
$$\begin{pmatrix} 29.05 & 16.79 & -3.73 & 43.31 & 29.27 \\ 29.05 & 16.79 & -3.73 & 43.31 & 29.27 \end{pmatrix}$$

Service_{hw} =
$$\begin{pmatrix} 16.97 & 9.96 & -2.21 & 25.32 & 17.09 \\ 16.97 & 9.96 & -2.21 & 25.32 & 17.09 \end{pmatrix}$$

Write box and headwall load CurrentDataFile

CurrentDataFile = "\Data Files\6X5 w 13.5 soil.da DataOut := DataIn

$$\underbrace{\text{DataOut}}_{1} := \frac{L_0}{\text{ft}}$$

$$DataOut_{85} := Strength_{box}$$

$$DataOut_{86} := Service_{box}$$

$$\mathsf{DataOut}_{87} \coloneqq \mathsf{Strength}_{hw}$$

$$DataOut_{88} := Service_{hw}$$

$$DataOut_{101} := BoxForce_{trk}$$

$$DataOut_{103} := BoxForce_{dc}$$

$$DataOut_{104} := BoxForce_{lane}$$

$$DataOut_{105} := BoxForce_{es}$$

$$DataOut_{106} := BoxForce_{ev}$$

$$DataOut_{107} := BoxForce_{eh}$$

$$DataOut_{112} := \frac{Haunch_{top}}{in}$$

DataOut₁₀₈ := BoxForce_{wa}

$$DataOut_{113} := \frac{Haunch_{bot}}{in}$$

$$DataOut_{109} := BoxForce_{ls}$$

WRITEPRN(CurrentDataFile) := DataOut

WRITEPRN(NewDataFile) := DataOut

Box Culvert Program: Box Reinforcement Design

© 2002 Florida Department of Transportation

Project = "6' x 5' under 13.5' fill"

DesignedBy = "KMF"

CheckedBy = "DLF" 8/17/2012

Note: AASHTO section references are shown at right margin, where appropriate, in bold-italic font

 $b_w = 1$ ft This program analyzes a one foot wide cross section

1. Design Parameters

Geometry and Box Dimensions

$$W_c = 6 \text{ ft}$$
 opening width of cell

$$H_c = 5 \text{ ft}$$
 opening height of cell

$$T_t = 8 \cdot in$$
 top slab thickness, (8 inch min.)

$$T_b = 8 \cdot in$$
 bottom slab thickness, (8 inch min.)

$$T_w = 8 \cdot in$$
 exterior wall thickness, (8 inch min.)

$$T_i = 8 \cdot in$$
 interior wall thickness, (8 inch min.)

$$L_c = 100 \text{ ft}$$
 length of culvert along centerline

Extension =
$$0$$
 extension type

0 new box, no extension.

1 left extension

2 right extension

$$NoOfCells = 1$$
 number of cells

box (typically =

$$Skew_{box} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot deg$$

HydraulicOpening := $W_c \cdot H_c \cdot NoOfCells$

HydraulicOpening = 30 ft²

Soil Properties

$$\gamma = 120 \cdot \frac{lbf}{ft^3}$$
 density of soil

$$k_{s} = 100000 \cdot \frac{lbf}{ft^{3}}$$

$$\phi = 30 \cdot \text{deg}$$
 soil friction angle

Material Properties

$$n_{mod} = 9$$
 modular ratio

$$2$$
-moderate 3-extreme

$$f_c = 5.5 \cdot ksi$$
 concrete strength

$$\gamma_{\rm conc} = 150 \cdot \frac{\rm lbf}{\rm ft^3}$$

$$F_y = 60 \cdot ksi$$

reinforcing strength

Construction Vehicle Loads (if required)

ConWheel1 =
$$0 \cdot \text{kip}$$

ConWheel2 =
$$0 \cdot \text{kip}$$

ConWheel3 =
$$0 \cdot \text{kip}$$

$$ConAxleSpacing1 = 16 ft$$

2. Design and Check Main Reinforcing

CurrentDataFile = "\Data Files\6X5 w 13.5 soil.dat"

it := 0...20 index for transverse sections

$$BarSize_{box_{it}} := 0$$
 $S_{box_{it}} := 12 \cdot in$

Cross Section Notes:

- 1. Bars shown with the same color are combined as Bar Groups.
- 2. Colored numbers indicate moment analysis locations.
- 3. Colored numbers in parenthesis indicate shear analysis locations.
- 4. Black numbers refer to bar designations.

Enter box reinforcing size and spacing

Generally, reinforcement should be at least a #3 bar and spacing should not exceed 12 inches.

Note: Shear generally controls slab and wall thicknesses and cracking generally controls reinforcement areas

Bar Designation

(section number) Bar Sizes & Spacings used in analysis

Change Bar Group values (color) or change individual Bars (white)

D101(2)
D102(1,3,4)
D103(12,14,16)
D104(15)

BarSize_{slabs} =
$$\begin{pmatrix} 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{pmatrix}$$
S_{slabs} = $\begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \end{pmatrix}$ ·in

$$S_{slabs} = \begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \end{pmatrix} \cdot in$$

$$BarSizeD1_{01} := XX$$
 $SD1_{01} := XX \cdot in$
 $BarSizeD1_{02} := XX$ $SD1_{02} := XX \cdot in$

$$\mathsf{newS}_{slabs} \coloneqq \mathbf{XX} {\cdot} \mathsf{in}$$

$$\begin{aligned} & \mathsf{BarSizeD1}_{03} \coloneqq \mathbf{XX} & \mathsf{SD1}_{03} \coloneqq \mathbf{XX} \cdot \mathsf{in} \\ & \mathsf{BarSizeD1}_{04} \coloneqq \mathbf{XX} & \mathsf{SD1}_{04} \coloneqq \mathbf{XX} \cdot \mathsf{in} \end{aligned}$$

BarSizeD1₀₅ :=
$$XX$$
 SD1₀₅ := XX in

$$\frac{D105(9,0,5)}{D106(9,7,13)} \quad \text{BarSize}_{\text{corners}} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} \quad \text{S}_{\text{corners}} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \cdot \text{in}$$

$$S_{corners} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \cdot in$$

$$\mathsf{newS}_{\mathsf{corners}} \coloneqq \mathbf{XX} \cdot \mathsf{in}$$

BarSizeD1
$$_{06}^{03}$$
 := **XX** SD1 $_{06}^{03}$:= **XX**·in

BarSize_{walls} =
$$\begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

$$S_{\text{walls}} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \cdot \text{ir}$$

$$newBarSize_{walls} := XX$$
 $newS_{walls} := XX \cdot in$

$$\begin{aligned} & \operatorname{BarSizeD1}_{07}^{\mathsf{Page}} \mathop{=}\limits^{\mathsf{205}} \mathop{\mathsf{of}}\limits^{\mathsf{c119}} \mathop{\mathsf{SD1}}\limits_{07} \coloneqq \mathbf{XX} \cdot \mathrm{in} \\ & \operatorname{BarSizeD1}_{08} \coloneqq \mathbf{XX} \quad \operatorname{SD1}_{08} \coloneqq \mathbf{XX} \cdot \mathrm{in} \end{aligned}$$

Section 2 - Box Main Reinforcement, 10 pages

Summary(CheckCracking_{box}) = "OK"

$CheckM_{box}^{T} =$		0	1	2	3	4	5	6	7	8	9	
Checkingox	0	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	•••	

Summary(Check M_{box}) = "OK"

$CheckAs_{min.box}^{T} =$		0	1	2	3	4	5	6	7	8	9
Chroni Ismin.oox	0	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	•••

Summary (CheckAs_{min.box}) = "OK"

$CheckShear_{box}^{T} =$	rila X	0	1	2	3	4	5	6	7	8	9
Checkshear box =	0	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	"ok"	77.

Summary(CheckShear_{box}) = "OK"

Summary (CheckAll_{box}) = "OK"

3. Design and Check Box Longitudinal Reinforcing

CurrentDataFile = "\Data Files\6X5 w 13.5 soil.dat"

To meet LRFD temperature and shrinkage requirements, reinforcement spacing should not exceed 12 inches.

il := 0..4 index for longitudinal sections

Enter Box Longitudinal Reinforcing

Bar Sizes & Spacings used in analysis

BarSize_{long} =
$$\begin{pmatrix} 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{pmatrix}$$

$$S_{long} = \begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \end{pmatrix} \cdot in$$

Change Bar Group (color) values or change individual Bars (white)

$$newS_{long} := 6 \cdot in$$

$$BarSizeD1_{09} := XX \qquad SD1_{09} := XX \cdot in$$

$$\mathsf{BarSizeD1}_{10} \coloneqq \mathbf{XX} \qquad \mathsf{SD1}_{10} \coloneqq \mathbf{XX} \cdot \mathsf{in}$$

BarSizeD1₁₁ :=
$$XX$$
 SD1₁₁ := $XX \cdot in$

$$\mathsf{BarSizeD1}_{12} \coloneqq \mathbf{XX} \qquad \mathsf{SD1}_{12} \coloneqq \mathbf{XX} \cdot \mathsf{in}$$

BarSizeD1₁₃ :=
$$XX$$
 SD1₁₃ := $XX \cdot in$

Section 3 - Box Longitudinal Reinforcement, 3 pages

CheckAs_{temp,box}
$$T = ("ok" "ok" "ok" "ok" "ok")$$

$$Summary(CheckAs_{temp,box}) = "OK"$$

Write Box Design Data to

CurrentDataFile = "\Data Files\6X5 w 13.5 soil.dat" file

Assign the data values read in to the ones to be read out, then change only the ones modified in this file

$$DataOut_{32} := BarSize_{slabs}$$

$$\mathsf{DataOut}_{33} \coloneqq \frac{\mathsf{S}_{\mathsf{slabs}}}{\mathsf{in}} \qquad \mathsf{DataOut}_{34} \coloneqq \mathsf{BarSize}_{\mathsf{walls}}$$

$$DataOut_{35} := \frac{S_{walls}}{in}$$

DataOut₃₆ := BarSize_{corners} DataOut₃₇ :=
$$\frac{S_{corners}}{in}$$

DataOut₃₇ :=
$$\frac{S_{corner}}{in}$$

$$DataOut_{38} := BarSize_{long}$$

DataOut₃₉ :=
$$\frac{S_{long}}{in}$$

 $DataOut_{90} := ReinfBox$

$$DataOut_{94} := \frac{As}{ft^2}$$

Page 207 of 219
$$DataOut_{95} := \frac{S_{box}}{ft}$$

 $\mathsf{DataOut}_{96} \coloneqq \mathsf{BarSize}_{\mathsf{loc}}$

$$DataOut_{110} := \frac{d}{ft}$$

$$DataOut_{111} := \frac{t_{section}}{ft}$$

WRITEPRN(CurrentDataFile) := DataOut

WRITEPRN(NewDataFile) := DataOut

20444 71	Client TVA	Job No. 956		Computed By KMF
301 Maitland Center Pkwy	Project Ash Pond	Date Checked	-17-2012	Date 6/28/2012
uite 300 aitland, FL 32751	Detail 6'x5' Box Culver	Checked By	6	Page No. 1
	Outlet	Buoyancy Check For Rectangular	Tanks	
uthor: Justin B	loggs Date:	20-Mar-07 Checked By:	File N	ame: buoy-rec.xls
mitations				
		vledge of the analysis procedure used in the ram is for the use of CDM Structural Engine		gram is subject to structural
arameters	-,3			
	3			2
Concrete Density (γ_c)	0.150 kip/ft ³	Backfill Soil Densit (Typ. Range 100 to		3
/ater Density (γ_w)	0.0624 kip/ft ³	Soil Friction Angle	(\phi) 0 °	
		(Typ. Range 15 to	20 deg)	
tructure Dimensions				
side Length (I)	1 ft	Top Slab Thickness (t _{ts})	Height of Walls abo	ove 5 ft
************	District of the second	0	Base Slab (h ,)	207 4
side Width (w)	6 ft	Base Slab Thickness (t _{bs}) 8 in	Height to Grade ab Base Slab (h 。)	ove 7.67 ft
/all Thickness (t _w)	8 in	Base Slab Toe Width (I _{loe}) 0 in	Height to GWL abo Base Slab (h ")	ve 7.67 ft
terior Wall Thickness	0 in	Interior Wall Length 0 ft	Interior Wall Height	O ft
		Height of Water in	Height of Soil Abov	
		Box Culvert 48 in	Top Slab (h _s)	24 in
olift Forces				
olume of Displaced Wate	r - Above Base Slab Le	vel		41.6 ft ³
6 ft + 2(0.67)]* 5.67				
olume of Displaced Wate	r - Volume of Base Slat)		4.9 ft ³
olume of Displaced Wate	r - Total			46.4 ft ³
olume of Displaced Wate	r - Total			46.4 ft ³
olume of Displaced Wate	r - Total		$V \cdot \gamma_{\infty} =$	46.4 ft ³ 2.90 kip/ft
plift Force (U)	r - Total		$V \cdot \gamma_w =$	
olift Force (U)	r - Total			2.90 kip/ft
esisting Loads			$l \cdot w \frac{t_{is}}{12} \gamma$	2.90 kip/ft 0.60 kip/ft
esisting Loads				2.90 kip/ft
olift Force (U) esisting Loads eight of Top Slab (wts) eight of Soil Above Top S	Slab			2.90 kip/ft 0.60 kip/ft
	Slab Ivert (reduced by 40%)			2.90 kip/ft 0.60 kip/ft 0.77 kip/ft
plift Force (U) esisting Loads /eight of Top Slab (wts) /eight of Soil Above Top S	Slab Ivert (reduced by 40%)			2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft
plift Force (U) esisting Loads reight of Top Slab (wts) reight of Soil Above Top S reight of Water in Box Cu reight of Base Slab (wbs)	Slab Ivert (reduced by 40%)			$2.90 \ kip/ft$ $c = 0.60 \ kip/ft$ $0.77 \ kip/ft$ $0.60 \ kip/ft$
eight of Soil Above Top Seight of Water in Box Culeight of Base Slab (wbs)	Slab Ivert (reduced by 40%) wv)			2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft
esisting Loads eight of Top Slab (wts) eight of Soil Above Top Seight of Water in Box Culeight of Base Slab (wbs) eight of Exterior Walls (w	Slab Ivert (reduced by 40%) wv)			2.90 kip/ft 0.60 kip/ft 0.60 kip/ft 0.73 kip/ft
esisting Loads eight of Top Slab (wts) eight of Soil Above Top S eight of Water in Box Cul eight of Base Slab (wbs) eight of Exterior Walls (water)	Slab Ivert (reduced by 40%) w)	$\left(1 \pm 2^{l_w} + l_{oo}\right)_{w = 2^{l_w} + l_{oo}} \left(1 \pm 2^{l_w}\right)_{w = 2^{l_w}}$	$l \cdot w \frac{t_{is}}{12} \gamma$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft 0.00 kip/ft
esisting Loads eight of Top Slab (wts) eight of Soil Above Top S eight of Water in Box Cul eight of Base Slab (wbs) eight of Exterior Walls (water)	Slab Ivert (reduced by 40%) w)	$\left[\left(1 + 2 \frac{t_w + I_{low}}{12} \right) w + 2 \frac{t_w + I_{low}}{12} \right) - \left(1 + 2 \frac{t_w}{12} \right) w + 2 \frac{t_w}{12}$	$l \cdot w \frac{t_{is}}{12} \gamma$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft
esisting Loads Veight of Top Slab (wts) Veight of Soil Above Top Slab (wts) Veight of Water in Box Culveight of Base Slab (wbs) Veight of Exterior Walls (was eight of Interior Walls (was	Slab Ivert (reduced by 40%) w)		$l \cdot w \frac{t_{is}}{12} \gamma$ $=$ $\left[\left[(h_{c} - h_{s}) \gamma_{sn} + \left[h_{s} (\gamma_{sn} - \gamma_{s}) \right] \right] =$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft 0.00 kip/ft
eight of Soil Above Toe of	Slab Ivert (reduced by 40%) wi) of Base Slab (ws1)	$ \left[\left(1 + 2\frac{t_{w} + l_{low}}{12} \right) w + 2\frac{t_{w} + l_{low}}{12} \right) - \left(1 + 2\frac{t_{w}}{12} \right) w + 2\frac{t_{w}}{12} \left(\frac{1}{2} h_{e}^{2} TAN(\phi) \gamma_{tot} - \frac{1}{2} h_{x}^{2} TAN(\phi) \gamma_{w} \right) \right] $	$l \cdot w \frac{t_{is}}{12} \gamma$ $=$ $\left[\left[(h_{c} - h_{s}) \gamma_{sn} + \left[h_{s} (\gamma_{sn} - \gamma_{s}) \right] \right] =$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft 0.00 kip/ft
eight of Top Slab (wts) eight of Soil Above Top S eight of Water in Box Cu eight of Base Slab (wbs) eight of Exterior Walls (w eight of Interior Walls (was) eight of Soil Above Toe of	Slab Ivert (reduced by 40%) wi) of Base Slab (ws1)		$l \cdot w \frac{t_{is}}{12} \gamma$ $=$ $\left[\left[(h_{c} - h_{s}) \gamma_{sn} + \left[h_{s} (\gamma_{sn} - \gamma_{s}) \right] \right] =$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft 0.00 kip/ft 0.00 kip/ft
esisting Loads leight of Top Slab (wts) leight of Soil Above Top Sleight of Water in Box Culleight of Base Slab (wbs) leight of Exterior Walls (water) leight of Interior Walls (water) leight of Soil Above Toe of the Soi	Slab Ivert (reduced by 40%) wi) of Base Slab (ws1)		$l \cdot w \frac{t_{is}}{12} \gamma$ $=$ $\left[\left[(h_{c} - h_{s}) \gamma_{sn} + \left[h_{s} (\gamma_{sn} - \gamma_{s}) \right] \right] =$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft 0.00 kip/ft 0.00 kip/ft
esisting Loads eight of Top Slab (wts) eight of Soil Above Top S eight of Water in Box Cu eight of Base Slab (wbs) eight of Exterior Walls (w eight of Interior Walls (was eight of Soil Above Toe of	Slab livert (reduced by 40%) w) wi) of Base Slab (ws1)		$l \cdot w \frac{t_{is}}{12} \gamma$ $=$ $\left[\left[(h_{c} - h_{s}) \gamma_{sn} + \left[h_{s} (\gamma_{sn} - \gamma_{s}) \right] \right] =$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft 0.00 kip/ft 0.00 kip/ft
plift Force (U) esisting Loads /eight of Top Slab (wts) /eight of Soil Above Top S	Slab Ivert (reduced by 40%) wi) of Base Slab (ws1) Vedges" (ws2)		$l \cdot w \frac{t_{is}}{12} \gamma$ $=$ $\left[\left[(h_{c} - h_{s}) \gamma_{sn} + \left[h_{s} (\gamma_{sn} - \gamma_{s}) \right] \right] =$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft 0.00 kip/ft 0.00 kip/ft 2.47 kip/ft
esisting Loads leight of Top Slab (wts) leight of Soil Above Top Slab (wbs) leight of Water in Box Culleight of Base Slab (wbs) leight of Exterior Walls (water) leight of Interior Walls (water) leight of Soil Above Toe of the slab (water) leight of Structure leight of Structure + Soil Alleight of	Slab Ivert (reduced by 40%) w) wi) of Base Slab (ws1) Vedges" (ws2) Area 1 Area 1 + Soil Area 2		$l \cdot w \frac{t_{is}}{12} \gamma$ $=$ $\left[\left[(h_{c} - h_{s}) \gamma_{sn} + \left[h_{s} (\gamma_{sn} - \gamma_{s}) \right] \right] =$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 1.13 kip/ft 1.13 kip/ft 0.00 kip/ft 0.00 kip/ft 2.47 kip/ft 2.47 kip/ft 2.47 kip/ft
eight of Top Slab (wts) eight of Soil Above Top Seight of Water in Box Cul eight of Base Slab (wbs) eight of Exterior Walls (water) eight of Interior Walls (water) eight of Soil Above Toe of the Soil Above Toe of the Soil Above Toe of the Soil of Structure eight of Structure + Soil A	Slab Ivert (reduced by 40%) wi) of Base Slab (ws1) /edges" (ws2) Area 1 Area 1 + Soil Area 2 Above Top Slab		$l \cdot w \frac{t_{is}}{12} \gamma$ $=$ $\left[\left[(h_{c} - h_{s}) \gamma_{sn} + \left[h_{s} (\gamma_{sn} - \gamma_{s}) \right] \right] =$	2.90 kip/ft 0.60 kip/ft 0.77 kip/ft 0.60 kip/ft 0.733 kip/ft 1.13 kip/ft 0.00 kip/ft 0.00 kip/ft 2.47 kip/ft 2.47 kip/ft

COMPUTED BY / DATE
CHECKED BY / DATE
REVISION NO. / DATE
REVIEWED BY / DATE
- - -

-				-	100
()	CII	atio	n I)	OCCTI	ption:
Ca.	icu,	atio	11 1	CSCII	DUIDII.

Precast Drop Box Design

1.0 Objective

Design precast drop boxes for use by the precaster.

2.0 Procedure

- 1.) Determine loads applied to all walls and slabs. Including fluid/earth lateral load, pedestrian live load (on rail), HS-20 Vehicle Live Load surcharge, Soil Vertical Pressure, and Self-weight of concrete.
- 2.) Calculate applied moments and shears using AASHTO load combinations.
- 3.) Calculate flexural (moment) and shear capacities of walls (wingwall and weir), beams, and columns.
- 4.) Check all capacity/applied ratios are less than 1.
- 5.) Check Buoyancy for Drop Box.

3.0 References / Data Sources

- 1.) ASCE 7
- 2.) IBC 2006
- 3.) ACI 318

4.0 Assumptions / Limitations

1.) Concrete strength increased in design for precast concrete.

5.0 Calculations

5.1 Drop Box Buoyancy

- Refer to Excel spreadsheet "Buoyancy Checks for Rectangular Tanks" and attached diagram for check.

5.2 Drop Boxes

- Refer to excel spreadsheets "Longwall - Soil Load (90pcf), 2ft soil surcharge" and "Short wall - Soil Load (90pcf), 2ft soil surcharge" for design loads and reinforcing calculations.

6.0 Conclusions

- The drop boxes have 12inch walls and slabs with reinforcing of #5 @ 6inches on center, each way, each face, top and bottom.

CDM	Client TVA				95618-9201	6	Co	mputed B	
801 Maitland Center Pkwy uite 300	Project Ash Pond Detail Drop Box			e Checked	8-17	ROIZ		Date	
aitland, FL 32751	Detail Drop Box		C	hecked By _	8			Page No	1
		Buoyancy C	heck For F	Rectangul	ar Tanks				
uthor: Justin B	oggs Date:	20-Mar-07	Check	ed By:			File Name	:	buoy-rec.xls
This program should only b	be used with a full kno	wledge of the analy	sis procedi	ure used in	the progr	am. Result	of the progra	m is sub	iect to structural
engineering evaluation and							p g		, 001 10 011 401414
Parameters									
Concrete Density (γ_c)	0.150 kip/ft ³				nsity (γ_{set}		115 kip/ft³		
Water Density (γ_w)	0.0624 kip/ft ³	1		Range 10 Friction An	00 to 125 p gle (φ)	oct)	15 °		
			(Тур.	Range 15	to 20 deg	1)	1		
Structure Dimensions									
Inside Length (I)	16 ft	Top Slab Thickne	ess (t _{ts})	12 ir	· V		Walls above		14.5 ft
Inside Width (w)	8 ft	Base Slab Thickn	ness (t bs)	12 ir)	Base Slai Height to	o (h ו) Grade above		18.00 ft
Wall Thickness (t ,,)	12 in	Base Slab Toe W	lidth (l.)	o ir		Base Slat	o (h ") GWL above		11.50 ft
						Base Slat	(h _w)		
Interior Wall Thickness	0 in	Interior Wall Leng Height of Water in	0.00000	0 ft		Interior W Height of	'all Height Soil Above		0 ft
		Box Culvert		36 in		Top Slab	(h_s)		42 in
Uplift Forces		7.2							
Volume of Displaced Water	- Above Base Slab L	evel							2070.0 ft ³
[6 ft + 2()]*[8ft +	2(1)])* 11.5 ft = 20	70					(8)		
olume of Displaced Water	- Volume of Base Sla	b							180.0 ft ³
Volume of Displaced Water	- Total							2	2250.0 ft ³
Jplift Force (U)							$V \cdot \gamma_w =$	1	40.40 kip
Resisting Loads									
Weight of Top Slab (wts)						1.	$w \frac{t_{ts}}{12} \gamma_c =$		19.20 kip
Weight of Soil Above Top S	Slab						12 ′ °		33.14 kip
Veight of Water in Drop Bo									23.96 kip
Weight of Base Slab (wbs)									UBI
Weight of Exterior Walls (w	w) - 2 wall openings in	2 walls							27.00 kip
•		∠ vvalio						•	87.44 kip
Weight of Interior Walls (ww		$[(1, 2l_x + l_{mx})]$	(+1,)	at _x Y	,	\	\n		0.00 kip
Veight of Soil Above Toe o	f Base Slab (ws1)	$\left[\left(1+2\frac{t_{w}+l_{toe}}{12}\right)w+2\frac{t_{w}}{12}\right]$	12	$+2\frac{\pi}{12}$ $w+2$	$\frac{2}{12}$	$(\chi_s)\gamma_{sat} + [h_s(\gamma_{sat})]$,- ₇ ,)]]=		0.00 kip
Veight of Soil in "Pullout W	edges" (ws2)	$\left(\frac{1}{2}h_e^2TAN\right)$	$(\phi)\gamma_{sat} - \frac{1}{2}$	$h_n^2 TAN(\phi)$	γ _w)· 2· [1·	$+2\frac{t_{w}}{12}+w+$	$2\frac{t_w}{12}$ =	2	17.63 kip
Veight of Structure		. (2	2) (12	12)		33.64 kip
Veight of Structure + Soil A	Area 1								33.64 kip
Veight of Structure + Soil A									- Control of the Cont
		Clab							51.27 kip
Veight of Structure + 3FT v		olad						1	90.74 kip
actor of Safety Against L	Jplift								
Veight of Structure + Soil A	rea 1 + Soil Area 2 / U	Jplift	2.50	≥	1.5	OK	~		
Veight of Structure + Soil A	bove Top Slab / Uplift		1.36	≥	1.3	OK			¥

INCET VIEW 11575 WINLEY OPENINGS = (2) [(7.334)(5,334)(14)(0,150 ECF)] = 11.93 E.P WTantiet openings = (2) [(7,33F) (6,38F) (1F) (8,30kce)] = 13,93 kp (se Exelouted) Total wt (including opening) = 113.1 - 13,93 - 11,73 = 89.44 E.p. (including opening) WTExternar wills = 113.1 Kip (solid) WILL VIEW 1167,9 119-11 15"

CDM	Client	TVA			Job No. 956	18-92	016 Co	omputed By	KMF
2301 Maitland Center Parkwa		Ash Pond		D:	ate Checked				/17/2012
Suite 300		Drop Box			Checked By	11	172012	Page No.	71772012
Maitland, FL 32751	Detail	Diop Dox			Checked by	7)	rage ivo.	
addana, r E o E r o r	REFEI	RENCE:	Rectang	ular Cond	rete Tanks, F	ifth I	Edition		
Author: James Fore	THE RESERVE THE PERSON NAMED IN	ecked By:	THE RESERVE	R&D Tea			AND REAL PROPERTY.	artanks3.xls Rev	v: 3
Wall Descripti									
Tran Boodings	om Longital	Oon Le		t Param	Name and Address of the Owner, where the Owner, which the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, which the	Ourt	ii procou	0 1110 110 1	. ,
Motorial Pro	nartica					_		Load Factor	
Material Pro	_			Panel Geo					
Concrete Strength, f'c	5,000	psi		b	14.5	ft		oad Factor	1.5
Reinforcing Strength, f	y 60,000	psi		a 🕆	8.1	ft	Durabilit	ty Coefficient	1.0
b/a		1.79	9	Lo	oad	В	ottom	Тор	Sides
Support Condition	n, Load 1	3		Tria	ngular		Fixed	Free	Fixed
Support Condition	n, Load 2	8	1	Recta	angular		Fixed	Free	Fixed
b/a upper limit	2.00	b/s	a lower l	imit	1.75				
	ce Load In	A STATE OF THE STA	Water State of the		1	111	WAR	NING !!!	
Load 1, Base Pre		130		psf]				
Load 2, Base Pre	ssure, q	495		psf	This program is fo	or the	use of CDN	1 Structural Enginee	ering
	7 1-2524				Staff Only. The p	rogran	n should on	ly be used with a fu	111
Rein	forcing Pla	cemen	it		knowledge of the	analy	sis procedu	re used in the prog	ram.
Vertical Reinfo		OF			The results of the	progi	ram are sub	ject to structural	
Clear Cover,		2	1	inches	engineering evalu				
Z _{max}	P 10 DE	115	The same of the sa	kips/in			, , , , ,	V1004/00/00	
			Sh	near Anal	A STATE OF THE PARTY OF THE PAR	1.0	inforcia		1111
Mall Thistoness (40	1	600		Outer Layer o	ı Kei	miorcing		φ
Wall Thickness, t w	12	inc	hes		l			$d=t_{w}-cc-$	2
1000	23 2000	1,000			Inner Layer of	Rei			
d _{bas}	_e =9.69		hes		- 1		d = t	$-cc-\phi_{outer\ bar}$	$-\frac{\phi_{inner\ bar}}{}$
d sid	_e = 9.06	inc	hes				· w	Youter bar	2
	9		$V_{}$	$=C_sqa$	(lf)				
		111			culation, V _u				
Shear	Cooffici	MANAGEMENT AND ADDRESS OF		kips/ft)		<i>4</i>) 1			
	THE RESERVE OF THE PERSON NAMED IN	ents, C _s	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN		V _u , (kips/f			WARNING.	S
LOCATION	Load 1	Load 2		Load 2	Total Shea	1			
Bottom edge - midpo		0.77	6.84	4.59	11.43 10.97				
Side edge - maximur		1.14	4.13	6.85					
Side edge - midpoin		0.54	4.10	3.22 0.00	7.32 0.00				
Top edge - midpoin	t 0.00	0.00	0.00	0.00	0.00				
$\phi V_{c(base)} = \frac{.75 * 2\sqrt{f_c}}{1000}$	bd		2020 0000		$.75*2\sqrt{f}$	b. d			177
$\phi V_{c(base)} = \frac{\sqrt{3c}}{1000}$	 =	12.33	_kips/ft	$\phi V_{c(side}$	$_{0} = \frac{-\sqrt{3} c}{1000}$)	-=1	11.53 kips/f	t
1000					1000				
			Analysis	Results	Summary				
DESIG	SN SUMMAR					RNIN	GS		
Wall Thickness	12	350035040	hes		(a)				
. 102 - 2		Ver	tical Rei	nforcing					
Dowels	#	5@6"							
Dowel Projection	LAP LENG		ASS B						
Vertical Bars	#	5 @ 6"							
		THE RESERVE TO STREET WHEN	zontal Re	einforcing	7				
Corner Bars	#	5@6"		1.19.11					
Horizontal Bars	#	5@6"							
				.1 11					

Smith2301 Maitland Center Parkway
Suite 300

Maitland, FL 32751

Client TVA
Project Ash Pond
Detail Drop Box

Job No. 95618-92016

Date Checked 8 -/ 7-2012

Checked By

Computed By Page 218 of 219

Date 8/17/2012

Page No.

				VE	RTICAL	MOMENT	ANALY	SIS				
8	Sup	port Con	dition, L	oad 1				Sup	port Con	dition, L	oad 2	
	0.1b	0.2b	0.3b	0.4b		Coeff.		0.1b	0.2b	0.3b	0.4b	
END	0.9b	0.8b	0.7b	0.6b	0.5b		END	0.9b	0.8b	0.7b	0.6b	0.5b
-10	0	0	0	0	0	TOP	-48	0	0	0	0	0
-11	-3	0	2	4	4	0.9a	-46	-13	1	9	13	14
-11	-4	2	5	8	8	0.8a	-40	-15	3	15	21	23
-10	-3	4	9	12	13	0.7a	-35	-12	5	18	25	27
-10	-1	6	12	15	16	0.6a	-30	-9	7	18	24	26
-9	0	8	13	15	16	0.5a	-24	-7	6	13	17	19
-8	1	7	11	12	12	0.4a	-18	-5	1	4	4	4
-6	1	4	4	4	3	0.3a	-12	-7	-8	-13	-18	-19
-4	-1	-4	-8	-11	-12	0.2a	-6	-10	-23	-38	-50	-54
-1	-6	-18	-28	-36	-38	0.1a	-1	-17	-46	-76	-96	-104
0	-17	-41	-61	-72	-75	BOT	0	-24	-79	-128	-160	-171

$$M_{ux} = \frac{M_x q_i a^2 (lf)(df)}{1000}$$

				0.00			IUUU					
	Factored	Moment	s (kip-fee	et), Loau	1	I	Ĺ ,	actoreu	woment	s (kip-fee	t), Load	2
	0.1b	0.2b	0.3b	0.4b		Mx		0.1b	0.2b	0.3b	0.4b	
END	0.9b	0.8b	0.7b	0.6b	0.5b		END	0.9b	0.8b	0.7b	0.6b	0.5b
-1	0	0	0	0	0	TOP	-2	0	0	0	0	0
-1	0	0	0	1	1	0.9a	-2	-1	0	0	1	1
-1	-1	0	1	1	1	0.8a	-2	-1	0	1	1	1
-1	0	1	1	2	2	0.7a	-2	-1	0	1	1	1
-1	0	1	2	2	2	0.6a	-1	0	0	1	1	1
-1	0	1	2	2	2	0.5a	-1	0	0	1	1	1
-1	0	1	1	2	2	0.4a	-1	0	0	0	0	0
-1	0	0	1	1	0	0.3a	-1	0	0	-1	-1	-1
-1	0	0	-1	-1	-2	0.2a	0	0	-1	-2	-2	-3
0	-1	-2	-4	-5	-5	0.1a	0	-1	-2	-4	-5	-5
0	-2	-5	-8	-9	-10	BOT	0	-1	-4	-6	-8	-8

Factored Moments (kip-feet), Load 1 & Load 2 Superimposed Reinforcing Rebar Spacing 0.1b 0.2b 0.3b 0.4b Mx Rebar A_s **END** 0.9b 0.8b 0.7b 0.6b 0.5b in² Size inches inches 0 0 0 TOP 5 9.7 0.61 -4 -1 0 1 1 1 0.9a 5 6 9.7 0.61 -3 0 2 0.8a 9.7 0.61 -1 2 1 5 6 -3 -1 2 3 0.7a 5 6 9.7 0.61 0.6a 9.7 0.61 0 2 3 5 0.5a 9.7 0.61 6 -2 2 0 1 2 2 0.4a 5 6 9.7 0.61 -1 0 0 0 0 0.3a 5 6 9.7 0.61 -1 -1 -2 -3 -4 -4 0.2a 5 6 9.7 0.61 0 -7 -9 -4 -10 5 0.1a 6 9.7 0.61 0.61

$$\rho_{req}^{*} = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mR_{h}}{f_{y}}} \right); m = \frac{f_{y}}{0.85f_{c}^{*}}; R_{h} = \frac{M_{u}}{\phi b d^{*}}; \phi = 0.9, \rho_{req}^{*} = \rho^{*} \frac{4}{3}, if \left(\rho_{req} \leq \frac{200}{f_{y}} \right) \qquad Z = f_{s} \sqrt[3]{d_{c} A}$$

	Flexural Analysis Summary												
Location	φM_n	M _u		2	fs	d _c	Α	Z	WARNINGS				
11	kip-feet	kip-feet	Pact	Preq	ksi	in	in ²	kips/in	WARNINGS				
TOP	26	4	0.0053	0.0010	5.08	2.31	27.8	20.3					
0.9a	26	4	0.0053	0.0010	5.18	2.31	27.8	20.7					
0.8a	26	3	0.0053	0.0009	4.71	2.31	27.8	18.9					
0.7a	26	3	0.0053	0.0008	4.20	2.31	27.8	16.8					
0.6a	26	3	0.0053	0.0009	4.60	2.31	27.8	18.4					
0.5a	26	3	0.0053	0.0008	4.11	2.31	27.8	16.5					
0.4a	26	2	0.0053	0.0005	2.66	2.31	27.8	10.7					
0.3a	26	1	0.0053	0.0004	1.89	2.31	27.8	7.6					
0.2a	26	4	0.0053	0.0011	5.91	2.31	27.8	23.6					
0.1a	26	10	0.0053	0.0026	13.82	2.31	27.8	55.3					
BOT	26	18	0.0053	0.0036	25.08	2.31	27.8	100.4					

Smith 2301 Maitland Center Parkway

Suite 300

Maitland, FL 32751

Client TVA
Project Ash Pond
Detail Drop Box

Job No. 95618-92016

Date Checked S-17-2012

Checked By

Computed By Page 2/14 of 219

Date 8/17/2012

Page No.

Checked By

				HOR	RIZONTA	L MOME!	VT ANAL	YSIS					
	Sup	port Con	dition, L	oad 1			Support Condition, Load 2						
	0.1b	0.2b	0.3b	0.4b		Coeff.		0.1b	0.2b	0.3b	0.4b		
END	0.9b	0.8b	0.7b	0.6b	0.5b		END	0.9b	0.8b	0.7b	0.6b	0.5b	
-50	-25	-1	15	23	26	TOP	-236	-91	4	58	86	95	
-57	-23	0	14	22	24	0.9a	-233	-83	4	54	80	88	
-55	-21	1	14	21	23	0.8a	-200	-75	4	50	73	80	
-53	-19	2	14	20	22	0.7a	-174	-66	5	45	65	71	
-51	-16	3	13	18	20	0.6a	-148	-55	4	38	55	60	
-48	-13	4	12	16	17	0.5a	-121	-43	4	30	43	47	
-40	-10	4	10	12	13	0.4a	-91	-37	3	22	30	33	
-31	-6	3	7	8	8	0.3a	-60	-21	1	11	15	16	
-19	-3	1	2	1	1	0.2a	-30	-12	-3	-1	0	-1	
-6	-2	-3	-4	-6	-6	0.1a	-7	-6	-9	-13	-16	-18	
0	-3	-8	-12	-14	-15	BOT	0	-5	-16	-25	-32	-34	

$$M_u = \frac{Coef * q_i a^2(lf)(df)}{1000}$$

		-		_			UUUU					
- 1	Factored	Moment	s (kip-fee	et), Luau	1			-actoreu	woment:	s (kip-fee	t), Load	2
	0.1b	0.2b	0.3b	0.4b		My		0.1b	0.2b	0.3b	0.4b	
END	0.9b	0.8b	0.7b	0.6b	0.5b		END	0.9b	0.8b	0.7b	0.6b	0.5b
-6	-3	0	2	3	3	TOP	-11	-4	0	3	4	5
-7	-3	0	2	3	3	0.9a	-11	-4	0	3	4	4
-7	-3	0	2	3	3	0.8a	-10	-4	0	2	4	4
-7	-2	0	2	3	3	0.7a	-8	-3	0	2	3	3
-6	-2	0	2	2	3	0.6a	-7	-3	0	2	3	3
-6	-2	1	2	2	2	0.5a	-6	-2	0	1	2	2
-5	-1	1	1	2	2	0.4a	-4	-2	0	1	1	2
-4	-1	0	1	1	1	0.3a	-3	-1	0	1	1	1
-2	0	0	0	0	0	0.2a	-1	-1	0	0	0	0
-1	0	0	-1	-1	-1	0.1a	0	0	0	-1	-1	-1
0	0	-1	-2	-2	-2	BOT	0	0	-1	-1	-2	-2

Factored Moments (kip-feet), Load 1 & Load 2 Superimposed Corner Reinforcing 0.1b 0.2b 0.3b 0.4b My Rebar Rebar Spacing d A_s **END** 0.9b 0.8b 0.7b 0.6b 0.5b Size inches in² inches -18 -8 0 5 8 TOP 9.1 0.61 6 -19 0 4 7 0.9a 5 6 9.1 0.61 -17 -6 0 4 6 7 0.8a 5 6 9.1 0.61 -15 0 9.1 -6 4 6 6 0.7a 5 6 0.61 -14 -5 5 5 0.6a 5 6 0.61 1 9.1 -12 4 0.5a 5 6 9.1 0.61 -10 1 2 3 0.4a 5 6 9.1 0.61 -2 2 -7 0 1 2 0.3a 5 9.1 6 0.61 -4 -1 0 0 0 0 0.2a 5 6 9.1 0.61 -1 -2 -2 0.1a 5 6 9.1 0.61 0 -2 ВОТ 6 9.1 0.61

$$\rho_{req}^{*} = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mR_{b}}{f_{y}}} \right); m = \frac{f_{y}}{0.85f_{c}^{'}}; R_{h} = \frac{M_{u}}{\phi b c t}; \phi = 0.9, \rho_{req}^{*} = \rho^{*4} /_{3}, if \left(\rho_{req} \le \frac{200}{f_{y}} \right) \qquad Z = f_{s} \sqrt[3]{d_{c} A}$$

	Corner Bar Flexural Analysis Summary												
Location	φM_n	M u			fs	d _c	Α	Z	WARNINGS				
	kip-feet	kip-feet	Pact	/ ⁾ req	ksi	in	in ²	kips/in	WARNINGS				
TOP	24	18	0.0056	0.0041	26.81	2.31	27.8	107.3					
0.9a	24	19	0.0056	0.0043	27.85	2.31	27.8	111.5					
0.8a	24	17	0.0056	0.0039	25.19	2.31	27.8	100.8					
0.7a	24	15	0.0056	0.0035	22.84	2.31	27.8	91.4					
0.6a	24	14	0.0056	0.0033	20.49	2.31	27.8	82.0					
0.5a	24	12	0.0056	0.0033	17.88	2.31	27.8	71.6					
0.4a	24	10	0.0056	0.0029	14.35	2.31	27.8	57.5					
0.3a	24	7	0.0056	0.0021	10.36	2.31	27.8	41.5					
0.2a	24	4	0.0056	0.0012	5.82	2.31	27.8	23.3					
0.1a	24	1	0.0056	0.0003	1.65	2.31	27.8	6.6					
вот	24	0	0.0056	0.0000	0.00	2.31	27.8	0.0					

Client TVA

Job No. 95618-92016

Computed By

KMF

2301 Maitland Center Parkway

Suite 300

Maitland, FL 32751

Client TVA

Job No. 95618-92016

Computed By

KMF

Date Checked By

Checked By

Page No.

HORIZONTAL MOMENT ANALYSIS (Continued)

				Horizon	tal Bar Fi	exural A	nalysis S	ummary				
Facto	red Mon	ents (kip	o-feet), L	oad 1 & L	oad 2							
		Superir	nposed				Horizontal Reinforcing					
	0.1b	0.2b	0.3b	0.4b	100	Mx	Rebar	Rebar Spacing	d	As		
END	0.9b	0.8b	0.7b	0.6b	0.5b		Size	inches	inches	in ²		
-18	-8	0	5	7	8	TOP	5	6	9.1	0.61		
-19	-7	0	4	7	7	0.9a	5	6	9.1	0.61	1	
-17	-6	0	4	6	7	0.8a	5	6	9.1	0.61	1	
-15	-6	0 -	4	6	6	0.7a	5	6	9.1	0.61	1	
-14	-5	1	4	5	. 5	0.6a	5	6	9.1	0.61	1	
-12	-4	1	3	4	4	0.5a	5	6	9.1	0.61	}	
-10	-3	- 1	2	3	3	0.4a	5	6	9.1	0.61	1	
-7	-2	0	1	2	2	0.3a	5	6	9.1	0.61	1	
-4	-1	0	0	0	0	0.2a	5	6	9.1	0.61	1	
-1	-1	-1	-1	-2	-2	0.1a	5	6	9.1	0.61	1	
0	-1	-2	-3	-3	-4	BOT	5	6	9.1	0.61	1	

$$\rho_{reg}^{*} = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mR_{h}}{f_{y}}} \right); m = \frac{f_{y}}{0.85f_{c}}; R_{n} = \frac{M_{u}}{\phi b d^{*}}; \phi = 0.9, \rho_{reg}^{*} = \rho^{*} \frac{4}{3}, if \left(\rho_{reg} \le \frac{200}{f_{y}} \right) \qquad Z = f_{s} \sqrt[3]{d_{c} A}$$

	Horizontal Bar Flexural Analysis Summary													
Location	φM _n	M _u	0	0	fs	d _c	Α	Z	WARNINGS					
	kip-feet	kip-feet	/ act	Preq	ksi	in	in ²	kips/in	WARNINGS					
TOP	24	8	0.0056	0.0024	11.83	2.31	27.8	47.3						
0.9a	24	7	0.0056	0.0022	11.08	2.31	27.8	44.4						
0.8a	24	7	0.0056	0.0021	10.26	2.31	27.8	41.1						
0.7a	24	6	0.0056	0.0019	9.35	2.31	27.8	37.5						
0.6a	24	5	0.0056	0.0017	8.21	2.31	27.8	32.9						
0.5a	24	4	0.0056	0.0013	6.64	2.31	27.8	26.6						
0.4a	24	3	0.0056	0.0010	4.83	2.31	27.8	19.3						
0.3a	24	2	0.0056	0.0005	2.66	2.31	27.8	10.6						
0.2a	24	1	0.0056	0.0003	1.46	2.31	27.8	5.8						
0.1a	24	2	0.0056	0.0005	2.53	2.31	27.8	10.1						
BOT	24	4	0.0056	0.0011	5.44	2.31	27.8	21.8						

REINFORCING DETAILS

	Vertical Reinforcing Cut-Off Details											
Location	Rebar Size	Rebar Spacing	Termin Point	T _h (ft)	12d _b inches	d inches	Dowel Termination Height (feet), h _d					
TOP	5	6			2114							
0.9a	5	6										
0.8a	5	6										
0.7a	5	6										
0.6a	5	6										
0.5a	5	6										
0.4a	5	6		77								
0.3a	5	6 .										
0.2a	5	6										
0.1a	5	6										
вот	5	6										

NOTES.

 ACI 318 12.10.3 - Reinforcement shall extend beyond the point at which it is no longer required to resist flexure for a distance equal to the effective depth of member or 12d_b, whichever is greater, except at supports of simple spans and at free end of cantilevers.

CDM Smith	Clien	t TVA			Job No. 95	618-9201	6 Ce	omputed By	KMF
2301 Maitland Center Parkw		t Ash Pod		D:	ate Checked				/17/2012
Suite 300		Drop Box	1 7	1	Checked By	the	20,0	Page No.	7772012
faitland, FL 32751						0			
	REFE	RENCE:	Rectange	ular Cond	rete Tanks, F	ifth Ed	ition		
Author: James For		ecked By:		R&D Tear				artanks3.xls Re	
Wall Descript	ion: Short w	all - Soil L	.oad (90F	PCF), LF f	or lateral-at-re	st earth	pressu	ure = 1.15*1.3=	1.495
	and the state of t		Inpu	it Param	eters				
Material Pro	operties		ŀ	Panel Geo	ometry		2	Load Factor	s
Concrete Strength, f_c	5,000	psi		b	9.0	ft	Live L	oad Factor	1.5
Reinforcing Strength,	f _y 60,000	psi		а	14.5	ft <i>L</i>	urabilit	ty Coefficient	1.0
b/a	-	0.62	2	Lo	ad	Bot	tom	Тор	Sides
Support Condition	n, Load 1	3		Triar	ngular	Fix	ed	Free	Fixed
Support Condition	n, Load 2	8		Recta	ingular	Fix	ed	Free	Fixed
b/a upper limit	0.75	b/a	a lower li	imit	0.50				
	ice Load Ir	tensitie	es			/// L	NΔR	NING !!!	
Load 1, Base Pro		130		psf					
Load 2, Base Pre	essure, q	495	16.	psf				1 Structural Engine	170
					Staff Only. The p	orogram s	hould on	ly be used with a fu	11
THE RESIDENCE OF THE PARTY OF T	forcing Pl	-	t				.50	re used in the prog	ram.
Vertical Reinfo	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	OF			The results of the				
Clear Cover, cc 2 inches					engineering eval	uation an	d judgem	ent.	
Z _{max}		115		kips/in					
			O.						
			Sn	near Analy		of Dains	erain a		
Mall Thickness 4	10	lina	600		Outer Layer of	oi Reirii	orcing		φ
Wall Thickness, t	_w 12	inci	hes		(mman (muan m	f Dainte		$d = t_w - cc -$	2
	- 0.00	S. Jane	4		<u>Inner Layer o</u>	it Reinto			,
	se = 9.69				×		$d = t_{w}$	$-cc-\phi_{outer\ bar}$	$-\frac{\varphi_{inner\ bar}}{2}$
a sid	_{de} =9.06	incl	nes						
			V_u	$=C_sqa$	(lf)				
		UI	timate S	hear Calo	ulation, V				-
Shear	Coeffic	ients, C s		kips/ft)	V _u , (kips/	ft)			
LOCATION	All I was a second second	Load 2	Load 1	THE RESERVE THE PERSON NAMED IN	Total Shea			WARNING	S
Bottom edge - midpo		0.27	6.33	2.93	9.26				
Side edge - maximu		0.32	5.49	3.46	8.95				
Side edge - midpoir		0.31	4.50	3.30	7.80				
Top edge - midpoir	nt 0.00	0.00	0.00	0.00	0.00				
$\phi V_{c(base)} = \frac{.75 * 2\sqrt{f_c}}{1000}$	$\frac{\overline{b_w}b_wd}{0} = $	12.33	kips/ft	$\phi V_{c(side}$	$\frac{.75*2\sqrt{f_0}}{1000}$	$\frac{\overline{b}_w d}{0} =$	1	l1.53 kips/f	ŧ
			Analysis	Results	Summary				NO AND A
DESI	GN SUMMAR		and Joie			RNING	S		
Vall Thickness	12		hes	—					
		1070000000		nforcing					
Oowels		5@6"							
lowel Projection	LAP LEN	GTH, CLA	ASS B						
ertical Bars	#	5@6"							
					-			272	
				1					
			zontal Re	einforcing	1				
Corner Bars		5@6"							
Horizontal Bars	#	5@6"							
		-	-		the bottom of the same of the	-	-		

Smith

2301 Maitland Center Parkway Suite 300 Client TVA
Project Ash Pod

Detail Drop Box

Job No. 95618-92016

Date Checked 8-/7-

Checked By

Computed By

Page 217 of 219

Date 8/17/2012
Page No.

Maitland,	FL	32751	

	VERTICAL	MOMENT	ANALYSIS
7	and the state of t	-	THE RESIDENCE OF THE PARTY OF T

1	Sup	port Con	dition, L	oad 1				Sup	port Con	dition, L	oad 2	
	0.1b	0.2b	0.3b	0.4b		Coeff.		0.1b	0.2b	0.3b	0.4b	
END	0.9b	0.8b	0.7b	0.6b	0.5b		END	0.9b	0.8b	0.7b	0.6b	0.5b
0	0	0	0	0	0	TOP	-6	0	0	0	0	0
-1	0	0	0	0	0	0.9a	-7	-3	0	1	1	2
-1	0	0	0	0	0	0.8a	-6	-3	0	1	3	3
-2	-1	0	0	1	1	0.7a	-6	-3	0	2	3	3
-3	-1	0	1	2	2	0.6a	-6	-3	0	2	4	4
-3	-1	0	2	2	3	0.5a	-6	-2	0	3	4	5
-3	-1	1	2	4	4	0.4a	-6	-2	1	3	5	5
-3	-1	1	3	4	5	0.3a	-5	-1	1	3	5	6
-2	0	1	2	3	4	0.2a	-3	-1	1	2	3	3
-1	0	0	-1	-1	-1	0.1a	-1	-1	-1	-2	-3	-3
0	-3	-8	-13	-16	-17	BOT	0	-3	-10	-17	-21	-23

$$M_{ux} = \frac{M_x q_i a^2 (lf)(df)}{1000}$$

		/		_			IUUU		-			
	Factored	Moment	s (kip-fee	et), Luau	ı	ractored woments (kip-feet), Loa						2
	0.1b	0.2b	0.3b	0.4b		Mx		0.1b	0.2b	0.3b	0.4b	
END	0.9b	0.8b	0.7b	0.6b	0.5b		END	0.9b	0.8b	0.7b	0.6b	0.5b
0	0	0	0	0	0	TOP	-1	0	0	0	0	0
-1	0	0	0	0	0	0.9a	-1	0	0	0	0	0
-1	0	0	0	0	0	0.8a	-1	0	0	0	0	0
-1	0	0	0	0	1	0.7a	-1	0	0	0	1	1
-1	0	0	0	1	1	0.6a	-1	0	0	0	1	1
-1	0	0	1	1	1	0.5a	-1	0	0	0	1	1
-1	0	0	1	2	2	0.4a	-1	0	0	1	1	1
-1	0	1	1	2	2	0.3a	-1	0	0	1	1	1
-1	0	1	1	1	2	0.2a	-1	0	0	0	1	1
0	0	0	0	-1	-1	0.1a	0	0	0	0	-1	-1
0	-1	-3	-5	-6	-7	BOT	0	0	-2	-3	-3	-4

Factored Moments (kip-feet), Load 1 & Load 2 Superimposed Reinforcing 0.1b 0.2b 0.3b 0.4b Rebar Rebar Spacing Mx A_s **END** 0.9b 0.8b 0.7b 0.6b 0.5b inches in² Size inches 0 0 0 0 0 TOP 9.7 0.61 -1 5 6 -2 -2 -1 0 0 0 0 0.9a 5 6 9.7 0.61 0 0 0.8a 9.7 0.61 -2 0 0.7a 5 6 -1 9.7 0.61 -2 -1 0 1 1 0.6a 5 6 9.7 0.61 -2 0 1 2 2 0.5a 5 6 9.7 0.61 -2 2 2 2 0.4a 5 6 9.7 0.61 -2 -1 1 2 3 3 0.3a 5 6 9.7 0.61 -2 0 2 2 1 1 0.2a 5 6 9.7 0.61 6 0 0.1a 9.7 0.61 BOT 0 -10 -10 -5 0.61

$$\rho_{req}^{*} = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mR_{b}}{f_{y}}} \right); m = \frac{f_{y}}{0.85f_{c}^{'}}; R_{u} = \frac{M_{u}}{\phi b d}; \phi = 0.9, \rho_{req}^{*} = \rho^{*} \frac{4}{3}, if \left(\rho_{req} \leq \frac{200}{f_{y}} \right) \qquad Z = f_{s} \sqrt[3]{d_{c} A}$$

	Flexural Analysis Summary										
Location	φM_n	M u			fs	d _c	Α	Z	WARNINGS		
	kip-feet	kip-feet	Pact	Preq	ksi	in	in ²	kips/in	WARNINGS		
TOP	26	1	0.0053	0.0003	1.68	2.31	27.8	6.7			
0.9a	26	2	0.0053	0.0004	2.36	2.31	27.8	9.4			
0.8a	26	2	0.0053	0.0004	2.25	2.31	27.8	9.0			
0.7a	26	2	0.0053	0.0005	2.53	2.31	27.8	10.1			
0.6a	26	2	0.0053	0.0006	3.11	2.31	27.8	12.4			
0.5a	26	2	0.0053	0.0006	3.11	2.31	27.8	12.4			
0.4a	26	2	0.0053	0.0006	3.44	2.31	27.8	13.8			
0.3a	26	3	0.0053	0.0008	4.13	2.31	27.8	16.5			
0.2a	26	2	0.0053	0.0006	3.04	2.31	27.8	12.2			
0.1a	26	1	0.0053	0.0003	1.57	2.31	27.8	6.3			
BOT	26	10	0.0053	0.0028	14.61	2.31	27.8	58.5			

CDM Smith Client TVA Job No. 95618-92016 Computed By Page 218 of 219 8/17/2012 2301 Maitland Center Parkway Project Ash Pod Date Checked 8-17-20) 2 Date Suite 300 Detail Drop Box Page No. Checked By Maitland, FL 32751 HORIZONTAL MOMENT ANALYSIS Support Condition, Load 2 Support Condition, Load 1 Coeff. 0.1b 0.2b 0.3b 0.4b 0.1b 0.2b 0.3b 0.4b 0.5b **END** 0.9b 0.8b 0.7b 0.6b 0.5b **END** 0.9b 0.8b 0.7b 0.6b 0 2 TOP -31 -16 9 16 18 -2 -2 1 -1 -2 2 -5 3 -35 17 0 0.9a -16 -1 8 15 2 3 -1 16 -7 -4 0 4 0.8a -34 -16 8 14 -10 -5 0 3 5 5 0.7a -33 -15 -1 8 14 16 -13 -6 0 3 6 6 0.6a -33 -15 -1 8 14 16

-15

-17

-16

-13

0

-6

-6

-6

-4

-2

0

0

0

0

0

0

4

4

4

3

-2

7

6

4

2

-3

8

7

5

-3

11	Lacons	Coef	$*q_ia^2$	(lf	`)(df	^)
$M_{"}$	=					_

0.5a

0.4a

0.3a

0.2a

0.1a

BOT

-32

-29

-25

-17

0

-13

-12

-10

-6

-2

0

-1

0

0

0

0

-2

8

7

4

-3

13

12

10

7

2

-4

15

14

11

7

2

-4

							1000					
	Factored	Moment	s (kip-fee	et), Loau	,		L '	actorea	woment	s (kip-fee	t), Load	2
	0.1b	0.2b	0.3b	0.4b		My		0.1b	0.2b	0.3b	0.4b	
END	0.9b	0.8b	0.7b	0.6b	0.5b		END	0.9b	0.8b	0.7b	0.6b	0.5b
-1	-1	0	0	1	1	TOP	-5	-3	0	1	2	3
-2	-1	0	1	1	1	0.9a	-5	-2	0	1	2	3
-3	-2	0	1	1	2	0.8a	-5	-2	0	1	2	3
-4	-2	0	1	2	2	0.7a	-5	-2	0	1	2	3
-5	-2	0	. 1	2	3	0.6a	-5	-2	0	1	2	2
-6	-3	0	2	3	3	0.5a	-5	-2	0	1	2	2
-7	-3	0	2	3	3	0.4a	-5	-2	0	1	2	2
-7	-2	0	2	3	3	0.3a	-4	-2	0	1	2	2
-5	-2	0	1	2	2	0.2a	-3	-1	0	1	1	1
-2	-1	0	0	1	1	0.1a	-1	0	0	0	0	0
0	0	-1	-1	-1	-1	BOT	0	0	0	-1	-1	-1

Facto	red Mon	ents (kip	o-feet), Lo	oad 1 & L	oad 2	-		51 .1			
		Superir	nposed					g			
	0.1b	0.2b	0.3b	0.4b		My	Rebar	Rebar Spacing	d	As	
END	0.9b	0.8b	0.7b	0.6b	0.5b		Size	inches	inches	in ²	
-6	-4	0	2	3	4	TOP	5	6	9.1	0.61	
-8	-3	0	2	3	4	0.9a	5	6	9.1	0.61	
-8	-4	0	2	4	4	0.8a	5	6	9.1	0.61	
-9	-4	0	3	4	5	0.7a	5	6	9.1	0.61	
-10	-5	0	3	5	5	0.6a	5	6	9.1	0.61	
-11	-5	0	3	5	5	0.5a	5	6	9.1	0.61	
-11	-5	0	3	5	5	0.4a	5	6	9.1	0.61	
-10	-4	0	3	4	5	0.3a	5	6	9.1	0.61	
-8	-3	0	2	3	3	0.2a	5.	6	9.1	0.61	
-3	-1	0	1	1	1	0.1a	5	6	9.1	0.61	
0	0	-1	-2	-2	-2	ВОТ	5	6	9.1	0.61	

$$\rho_{req}^{*} = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mR_{c}}{f_{y}}} \right); m = \frac{f_{y}}{0.85f_{c}^{*}}; R_{n} = \frac{M_{u}}{\phi b d}; \phi = 0.9, \rho_{req}^{*} = \rho^{*} \frac{4}{3}, if \left(\rho_{req} \leq \frac{200}{f_{y}} \right) \qquad Z = f_{s} \sqrt[3]{d_{c} A}$$

Corner Bar Flexural Analysis Summary											
Location	φM_n	M_u			fs	d _c	Α	Z	WARNINGS		
201 2.1	kip-feet	kip-feet	Pact	/ ⁾ req	ksi	in	in ²	kips/in	WARNINGS		
TOP	24	6	0.0056	0.0017	8.66	2.31	27.8	34.7			
0.9a	24	8	0.0056	0.0023	11.41	2.31	27.8	45.7			
0.8a	24	8	0.0056	0.0025	12.40	2.31	27.8	49.6			
0.7a	24	9	0.0056	0.0029	14.11	2.31	27.8	56.5			
0.6a	24	10	0.0056	0.0032	15.53	2.31	27.8	62.2			
0.5a	24	11	0.0056	0.0033	16.84	2.31	27.8	67.4			
0.4a	24	11	0.0056	0.0033	17.20	2.31	27.8	68.9			
0.3a	24	10	0.0056	0.0032	15.57	2.31	27.8	62.3			
0.2a	24	8	0.0056	0.0024	12.04	2.31	27.8	48.2			
0.1a	24	3	0.0056	0.0010	5.01	2.31	27.8	20.1			
ВОТ	24	0	0.0056	0.0000	0.00	2.31	27.8	0.0			

CDM Smith

2301 Maitland Center Parkway Suite 300 Client TVA
Project Ash Pod

Detail Drop Box

Job No. 95618-92016

Computed By
Date

Page No.

8/17/2012

Maitland, FL 32751

Checked By

HORIZONTAL MOMENT ANALYSIS (Continued)

Horizontal	Bar Flexural Anal	sis Summary
	THE RESIDENCE OF THE PARTY OF T	THE RESIDENCE OF THE PARTY.

Facto	red Mon		o-feet), L	oad 1 & L			, , , , , ,		Deletere			
			nposed				Horizontal Reinforcing					
	0.1b	0.2b	0.3b	0.4b		Mx	Rebar	Rebar Spacing	d	A_s		
END	0.9b	0.8b	0.7b	0.6b	0.5b		Size	inches	inches	in ²		
-6	-4	0	2	3	4	TOP	5	6	9.1	0.61		
-8	-3	0	2	3	4	0.9a	5	6	9.1	0.61	1	
-8	-4	0	2	4	4	0.8a	5	6	9.1	0.61	1	
-9	-4	0	3	4	5	0.7a	5	6	9.1	0.61	1	
-10	-5	0	3	5	5	0.6a	5	6	9.1	0.61	1	
-11	-5	0	3	5	5	0.5a	5	6	9.1	0.61	l	
-11	-5	0	3	5	5	0.4a	5	6	9.1	0.61	l	
-10	-4	0	3	4	5	0.3a	5	6	9.1	0.61		
-8	-3	0	2	3	3	0.2a	5	6	9.1	0.61		
-3	-1	0	1	1	1	0.1a	5	6	9.1	0.61		
0	0	-1	-2	-2	-2	BOT	5	6	9.1	0.61		

$$\rho_{req}^{*} = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mR_{c}}{f_{y}}} \right); m = \frac{f_{y}}{0.85f_{c}^{*}}; R_{n} = \frac{M_{u}}{\phi b d}; \phi = 0.9, \rho_{req}^{*} = \rho^{*} \frac{4}{3}, if \left(\rho_{req} \leq \frac{200}{f_{y}} \right) \qquad Z = f_{s} \sqrt[3]{d_{c} A}$$

Horizontal Bar Flexural Analysis Summary									
Location	φM_n	M_u	Pact	$ ho_{req}$	fs	d _c	Α	Z	IMARAMANOS
	kip-feet	kip-feet			ksi	in	in ²	kips/in	WARNINGS
TOP	24	4	0.0056	0.0011	5.66	2.31	27.8	22.7	
0.9a	24	4	0.0056	0.0012	6.05	2.31	27.8	24.2	
0.8a	24	4	0.0056	0.0013	6.23	2.31	27.8	24.9	
0.7a	24	5	0.0056	0.0014	6.85	2.31	27.8	27.4	
0.6a	24	5	0.0056	0.0015	7.65	2.31	27.8	30.6	
0.5a	24	5	0.0056	0.0016	8.15	2.31	27.8	32.6	
0.4a	24	5	0.0056	0.0016	8.13	2.31	27.8	32.6	
0.3a	24	5	0.0056	0.0015	7.26	2.31	27.8	29.1	
0.2a	24	3	0.0056	0.0010	5.12	2.31	27.8	20.5	
0.1a	24	1	0.0056	0.0004	1.81	2.31	27.8	7.3	
BOT	24	2	0.0056	0.0006	3.17	2.31	27.8	12.7	

REINFORCING DETAILS

Vertical Reinforcing Cut-Off Details								
Location	Rebar Size	Rebar Spacing	Termin Point	T _h (ft)	12d _b inches	d inches	Dowel Termination Height (feet), h _d	
TOP	5	6						
0.9a	5	6						
0.8a	5	6						
0.7a	5	6						
0.6a	5	6						
0.5a	5	6						
0.4a	5	6) - 100 mm	
0.3a	5	6	kanana a maran					
0.2a	5	6					_	
0.1a	5	6						
BOT	5	6					3	

NOTES.

 ACI 318 12.10.3 - Reinforcement shall extend beyond the point at which it is no longer required to resist flexure for a distance equal to the effective depth of member or 12d_b, whichever is greater, except at supports of simple spans and at free end of cantilevers.